A. 動物的血為什麼是紅的啊
絕大多數的動物血液和人類的血液是一樣的,都是鮮紅色。但也有少數動物的血液不是鮮紅,而是五顏六色。動物的血液為什麼會呈現出多種多樣的顏色呢?原因是,血液的顏色是血色蛋白所含有的元素決定的。每種動物在進化的過程中,各自形成了不同種類的血色蛋白,因此血液也就成了五顏色六的了。蚯蚓的血非常之美麗,呈玫瑰色。蜘蛛的血則是青綠色的。生活在海岸邊岩縫隙中的一種小環蟲,它的血呈鮮綠色,因此有些科學家叫它「綠血蟲」。那烏賊的血液是黑色的嗎?不,它的血液也是綠色的。而蝦、海蟹、毛蟹的血是淡青色的,因此有些人誤認為蝦、蟹等是無血的動物。有一種叫做鱟的節肢類動物,它的血液是藍色的。而河馬與蝸牛的血液則也是淡藍色的。而田螺則更容易被人錯認為是無血的動物,因為,它的血呈白色,有點類似牛奶。南極的海里有一種「白血魚」,它的血不但沒有血色素,而且有氧所帶來的其它物質,就連血球也沒有,因此血呈無色。南極周邊的海域里有許多種稀有的魚,它們的血也都是無色的。更罕見的是棲息在海底里岩石上的一種扇螅蟲,它的血居然能變色,一會兒呈綠色,一會兒變成了紅色。動物的血液為什麼會呈現出多種多樣的顏色呢?原因是,血液的顏色是血色蛋白所含有的元素決定的。每種動物在進化的過程中,各自形成了不同種類的血色蛋白,因此血液也就成了五顏色六的了。
B. 請問科學專家血是什麼和什麼形成正常血的動物和人呢
你好!
1.血和肉一樣是由一定形態和機能的細胞構成的人體組織。新鮮血液是骨髓幹細胞中分化形成的,每隔一段時間,人體的血液就會全部更新一遍,老的血細胞就變成垃圾被清理掉。
2.人和動物的血的區別主要是血型不一樣,每一種血型血液中都含有他特殊的識別功能,一旦體內輸入不一樣的血型,就會產生免疫反應。
3.提問者可能不知道 血和其它的人體組織是一樣的,並沒有什麼特殊,都是由細胞構成,而細胞都是具有基本的結構:細胞膜、細胞質、遺傳物質、細胞核等結構。
4 希望能夠理解。
C. 動物血是怎麼製成的
新鮮的血,要放一些鹽水進去,才會凝固,然後放到水裡蒸或煮
D. 動物的血液是什麼
大多數動物的血是紅色的,因為血中有一種物質叫血紅蛋白,血紅蛋白中含有的鐵元素,與其他物質共同形成的復合物呈現紅色。
血紅蛋白在血液中執行運送氧氣和二氧化碳的任務。隨著血液流動,血紅蛋白將氧氣和各種營養物質運送到動物體全身各處的組織細胞中,同時,又將二氧化碳和各種代謝廢物帶到肺、腎、皮膚,然後排出體外。
也有一些動物的血液不是紅色的,因為這些動物的血液中沒有血紅蛋白。如河蚌、田螺、對蝦等血液中含有血清素,血液是無色透明的。更奇特的是有一種叫「鱟」的動物,血液中含有銅元素,血液是藍色的。
E. 動物的血液為什麼大都是紅色的
動物血液的顏色
張世彪
各類動物的血液由於組成成分及其生理狀態的差異而在顏色上也有所不同,如絕大多數脊椎動物的血液是紅色的,無脊椎動物的血液則有的呈藍色,有的呈紫紅色、綠色等。
那麼,動物血液的顏色到底是由什麼決定的呢?有人認為血液的顏色取決於所含某種離子的顏色,如認為脊椎動物和蚯蚓等的血液呈紅色是由於鐵離子的存在;藍色血液是由於銅離子的存在等[事實上Fe2+在水溶液中為淺綠色,Fe3+一般為黃色;Cu2+只有在Cu(H2O)2+4狀態呈藍色,其餘均為無色]。筆者認為,諸如這些說法都是不正確的,因為這些離子一方面並不顯示該種動物血液的顏色,否則像脊椎動物的動脈血為鮮紅色而靜脈血為暗紅色的這種顏色的變化就無法解釋了,因為動脈血和靜脈血中鐵離子並沒有發生化合價的變化。另一方面,這些離子在血液中並不是孤立存在的,如Fe2+存在於血紅蛋白的輔基--血紅素中,原卟啉與Fe2+形成四配位體螯合的絡合物,其外圍被血紅素分子的珠蛋白鏈的氨基酸殘基包圍著以提供飛機型低介電的環境保護Fe2+不被氧化為Fe3+。同樣,有些動物血液中的Cu2+也是和蛋白質結合在一起的,所以動物血液的顏色不一定就呈現某種離子的顏色。
動物血液呈現什麼顏色,要看血液中生色物質所吸收的光是哪些可見光,如果吸收的某種或某些可見光,則顯示出的顏色就是這些顏色的互補色,或者說對哪種光不吸收或吸收的較少則顯示出該種顏色,正如葉綠素對綠色光幾乎不吸收而使其呈現綠色一樣。血紅蛋白的血紅素分子有11個雙鍵,共軛雙鍵所吸收的可見光使得血紅蛋白呈紅色。然而,血紅蛋白在氧合狀態和脫氧狀態下由於構象的變化使得它們的吸收光譜也有所不同。所以,氧合血紅蛋白最終呈現的顏色是紅色,脫氧血紅蛋白的顏色是紫藍色。因此,脊椎動物血液中氧合血紅蛋白和脫氧血紅蛋白所佔的比例就決定了動脈血和靜脈血的顏色。在一些無脊椎動物中,多數動物的血液不含血紅蛋白,如軟體動物(頭足動物和石鱉屬等)以及節肢動物(蝦、蟹及肢口綱的鱟)所含的是血藍蛋白。血藍蛋白分子由Cu2+和1個約200個以上氨基酸的肽鏈結合而成,和血紅蛋白一樣,該呼吸色素的顏色也與其狀態有關,在氧和狀態下為藍色,在非氧和狀態下則為無色或白色。有些多毛蟲(如帚毛蟲科、綠血蟲科)的血液中含有血綠蛋白,鈣蛋白也含有鐵離子,化學性質與血紅蛋白相似,氧合時呈紅色,而非氧和狀態下卻呈綠色;另外,像星蟲、多毛蟲綱的長沙蠶屬及腕足動物中的血液中也有一種含
鐵的蛋白叫血褐蛋白,該蛋白不含卟啉結構,氧和狀態下顯紫紅色,而非氧和狀態下為褐色。
值得一提的是昆蟲的血液,昆蟲的血液其實一個運送營養物質和代謝廢物的內部介質,所以又稱血淋巴,由血漿和血細胞組成,因呼吸作用在氣管中進行,故昆蟲的血液無呼吸色素。昆蟲的血液也常有各種顏色,常見的有黃色、橙紅色、藍綠色和綠色等,它們血液中所含的色素物質使得其血液呈現出特定的顏色,如大天蠶蛾中有α-胡蘿卜素、核黃素和黃素-核苷酸;家蠶中的黃酮、熒光素和葉酸;菜粉蝶的幼蟲血液的綠色是因為黃色蛋白(其輔基為β-胡蘿卜素和葉黃素)和一種藍色蛋白(其輔基為膽綠素)共同存在的結果。在散居型飛蝗綠色血液中也有類似的成分,但是,一種綠色蝽的綠色血液是由於一種β-胡蘿卜素-蛋白復合體和一種近似花青素存在的結果。昆蟲血液中的這些色素一般認為是從食物中獲得的。另外,昆蟲血液的顏色有的還與性別有關,如菜粉蝶的幼蟲、蛹和成蟲的血液,雌的為綠色,雄的則為黃色或無色。
(本文發表於由陝西師范大學出版社1998年出版的《生物教學藝術探索》第二輯中)
生命之「海」——血液趣談
劉衛群
血液是人體細胞生命活動之「海」。人的血液包括血漿和血細胞兩部分。血液是一種淡黃色的液體。血細胞可分為紅血球、白血球和血小板三部分。血小板的主要作用是促進止血和畸啊素凝血;白血球能抵抗細菌侵入人體內,從而保護人的身體,被人類譽為「人體內的忠實衛兵」;紅血球內喊血紅蛋白,血液可因血紅蛋白中所含成分的不同而呈現不同的顏色。
人的血紅蛋白是一種含鐵的蛋白質,鼓人的血液是紅色的。脊椎動物的血液也是紅色的。但是,對蝦的血液是無色的,其血漿呃逆還含有血清蛋白。蝗蟲及其他一些昆蟲的血液中不含Fe2+而含Cu2+,所以它們的血呈藍綠色。蚯蚓的血液亦為紅色,但其血紅蛋白卻是在血漿中的。
前面所說的血液皆為有生命之物,現略談一下無生命的血液——人造血。人造血是一種氟碳化合物的溶液,呈乳白色,具一般血液所具有的主要機能——攜帶O2進人體,排CO2出人體。人造血在臨床上起著應急過度作用,目前國外已正式用於臨床了。
F. 血液是怎樣生成與運行的
血液的生成
每個人體內的血液,都是自己體內產生的,不是由母體血液流入胎兒血管先天帶來的。
胎兒早期發育時,在其胚胎體內部,就逐步產生了自己的造血中心。當胚胎發育到第3周時,卵黃囊壁上的血島就是第1個造血的中心,這個中心的造血期到第9周為止。胚胎發育到第6周時,肝臟開始造血,9周~24周的胎兒,肝臟是主要的造血場所。肝臟造血以紅細胞為主,同時也生成少量粒細胞和巨核細胞,但不生成淋巴細胞。在這期間,脾、腎、胸腺和淋巴結等處也參與造血。脾臟產生於胚胎第3個月,開始以生成紅細胞為優勢,以後也生成一定數量的粒細胞、淋巴細胞和單核細胞。
胸腺為人體周圍淋巴組織提供前T細胞,這就是身體生成具有免疫功能的T淋巴細胞的來源。淋巴結參與早期生成紅細胞,但到胚胎發育進入第4個月後,就成為終身製造淋巴細胞和漿細胞的器官。當胚胎發育進入第4個月以後,骨髓開始造血。到第5個月後,肝、脾造血功能逐步減退,骨髓造血功能迅速增加,成為紅細胞、粒細胞和巨核細胞的主要生成器官,同時也產生淋巴細胞和單核細胞。
胎兒出生以後,肝臟造血功能已停止,但脾臟仍是終身產生淋巴細胞的器官,而骨髓則是人體最重要的造血器官。在正常情況下它不僅生成紅細胞、粒細胞和血小板,同時也生成淋巴細胞和單核細胞。在骨髓造血的同時,胸腺和淋巴結也開始造血活動。
血液循環
心臟節律性的搏動推動血液在心血管系統中按一定方向循環往復地流動。血液循環是英國哈維根據大量的實驗、觀察和邏輯推理於1628年提出的科學概念。然而限於當時的條件,他並不完全了解血液是如何由動脈流向靜脈的。1661年義大利馬爾庇基在顯微鏡下發現了動、靜脈之間的毛細血管,從而完全證明了哈維的正確推斷。動物在進化過程中,血液循環的形式是多樣的。循環系統的組成有開放式和封閉式;循環的途徑有單循環和雙循環。人類血液循環是封閉式的,由體循環和肺循環兩條途徑構成的雙循環。血液由左心室射出經主動肪及其各級分支流到全身的毛細血管,在此與組織液進行物質交換,供給組織細胞氧和營養物質,運走二氧化碳和代謝產物,動脈血變為靜脈血;再經各級表肪匯合成上、下腔靜脈流回友心房,這一循環為體循環。血液由右心室射出經肺動脈流到肺毛細血管,在此與肺泡氣進行氣體交換,吸收氧並排出二氧化碳,靜脈血變為動脈血;然後經肺靜脈流回左心房,這一循環為肺循環。
G. 人類以及動物身上的血從哪裡來的
血液由血漿和血細胞組成。
(一)血漿
血漿相當於結締組織的細胞間質,為淺黃色半透明液體,其中除含有大量水分以外,還有無機鹽、纖維蛋白原、白蛋白、球蛋白、酶、激素、各種營養物質、代謝產物等。這些物質無一定的形態,但具有重要的生理功能。
1L血漿中含有900~910g水(90%~91%)。65~85g蛋白質(6.5%~8.5% )和20g低分子物質(2%).低分子物質中有多種電解質和小分子有機化合物,如代謝產物和其他某些激素等。血漿中電解質含量與組織液基本相同。由於這些溶
(二)血細胞
在機體的生命過程中,血細胞不斷地新陳代謝。紅細胞的平均壽命約120天,顆粒白細胞和血小板的生存期限一般不超過10天。淋巴細胞的生存期長短不等,從幾個小時直到幾年。
血細胞及血小板的產生來自造血器官,紅血細胞、有粒白血細胞及血小板由紅骨髓產生,無粒白血細胞則由淋巴結和脾臟產生。
血細胞分為三類:紅細胞、白細胞、血小板。
1、紅細胞
紅細胞(erythrocyte,red blood cell)直徑7~8.5μm,呈雙凹圓盤狀,中央較薄(1.0μm),周緣較厚(2.0μm),故在血塗片標本中呈中央染色較淺、周緣較深(見彩圖)。在掃描電鏡下,可清楚地顯示紅細胞這種形態特點。紅細胞的這種形態使它具有較大的表面積(約140μm2),從而能最大限度地適應其功能――攜O2和部分CO2。新鮮單個紅細胞為黃綠色,大量紅細胞使血液呈猩紅色,而且多個紅細胞常疊連一起呈串錢狀,稱紅細胞緡線。
紅細胞有一定的彈性和可塑性,細胞通過毛細血管時可改變形狀。紅細胞正常形態的保持需ATP供給能量,由於紅細胞缺乏線粒體,ATP只由無氧糖酵解產生;一旦缺乏ATP供能,則導致細胞膜結構改變,細胞的形態也隨之由圓盤狀變為棘球狀。這種形態改變一般是可逆的。可隨著ATP的供能狀態的改善而恢復。
成熟紅細胞無細胞核,也無細胞器,胞質內充滿血紅蛋白(hemoglobin,Hb)。血紅蛋白是含鐵的蛋白質,約占紅細胞重量的33%。它具有結合與運輸O2和CO2的功能,當血液流經肺時,肺內的O2分壓高(102mmHg),CO2分壓低(40mmHg),血紅蛋白(氧分壓40mmHg,二氧化碳分壓46mmHg)即放出CO2而與O2結合;當血液流經其它器官的組織時,由於該處的CO2分壓高(46mmHg)而O2分壓低(40mmHg),於是紅細胞即放出O2並結合CO2。由於血紅蛋白具有這種性質,所以紅細胞能供給全身組織和細胞所需的O2,帶走所產生的部分CO2。
正常成人每微升血液中紅細胞數的平均值,男性約400萬~500萬個,女性約350萬~450萬個。血液中血紅蛋白含量,男性約 120~150g/L,女性約105~135g/L。全身所有紅細胞表面積總計,相當於人體表面積的2000倍。紅細胞的數目及血紅蛋白的含量可有生理性改變,如嬰兒高於成人,運動時多於安靜狀態,高原地區居民大都高於平原地區居民,紅細胞的形態和數目的改變、以及血紅蛋白的質和量的改變超出正常范圍,則表現為病理現象。一般說,紅細胞數少於300萬/μ1為貧血,血紅蛋白低於100g/L則為缺鐵性貧血。此時常伴有紅細胞的直徑及形態的改變,如大紅細胞貧血的紅細胞平均直徑>9μm,小紅細胞貧血的紅細胞平均直徑<6μm。缺鐵性貧血的紅細胞,由於血紅蛋白的含量明顯降低,以致中央淡染區明顯擴大。
紅細胞的滲透壓與血漿相等,使出入紅細胞的水分維持平衡。當血漿滲透壓降低時,過量水分進入細胞,細胞膨脹成球形,甚至破裂,血紅蛋白逸出,稱為溶血(hemolysis);溶血後殘留的紅細胞膜囊稱為血影(ghost)。反之,若血漿的滲透壓升高,可使紅細胞內的水分析出過多,致使紅細胞皺縮。凡能損害紅細胞的因素,如脂溶劑、蛇毒、溶血性細菌等均能引起溶血。
紅細胞的細胞膜,除具有一般細胞膜的共性外,還有其特殊性,例如紅細胞膜上有ABO血型抗原。
外周血中除大量成熟紅細胞以外,還有少量未完全成熟的紅細胞,稱為網織紅細胞(reticulocyte)在成人約為紅細胞總數的0.5%~1.5%,新生兒較多,可達3%~6%。網織紅細胞的直徑略大於成熟紅細胞,在常規染色的血塗片中不能與成熟紅細胞區分。用煌焦藍作體外活體染色,可見網織紅細胞的胞質內有染成藍色的細網或顆粒,它是細胞內殘留的核糖體。核糖體的存在,表明網織紅細胞仍有一些合成血紅蛋白的功能。紅細胞完全成熟時,核糖體消失,血紅蛋白的含量即不再增加。貧血病人如果造血功能良好,其血液中網織紅細胞的百分比值增高。因此,網織紅細胞的計數有一定臨床意義,它是貧血等某些血液病的診斷、療效判斷和估計預指標之一。
紅細胞的平均壽命約120天。衰老的紅細胞雖無形態上的特殊樗,但其機能活動和理化性質都有變化,如酶活性降低,血紅蛋白變性,細胞膜脆性增大,以及表面電荷改變等,因而細胞與氧結合的能力降低且容易破碎。衰老的紅細胞多在脾、骨髓和肝等處被巨噬細胞吞噬,同時由紅骨髓生成和釋放同等數量紅細胞進入外周血液,維持紅細胞數的相對恆定。
2、白細胞
白細胞(leukocyte,white blood cell)為無色有核的球形細胞,體積比紅細胞大,能作變形運動,具有防禦和免疫功能。成人白細胞的正常值為4000~10000個/μ1。男女無明顯差別。嬰幼兒稍高於成人。血液中白細胞的數值可受各種生理因素的影響,如勞動、運動、飲食及婦女月經期,均略有增多。在疾病狀態下,白細胞總數及各種白細胞的百分比值皆可發生改變。
光鏡下,根據白細胞胞質有無特殊顆粒,可將其分為有粒白細胞和無粒白細胞兩類。有粒白細胞又根據顆粒的嗜色性,分為中性粒細胞、嗜酸性粒細胞用嗜鹼性粒細胞。無粒白細胞有單核細胞和淋巴細胞兩種。
中性粒細胞:中性粒細胞(neutrophilic granulocyte,neutrophil)占白細胞總數的50%-70%,是白細胞中數量最多的一種。細胞呈球形,直徑10-12μm,核染色質呈團塊狀。核的形態多樣,有的呈臘腸狀,稱桿狀核;有的呈分葉狀,葉間有細絲相連,稱分葉核。細胞核一般為2~5葉,正常人以2~3葉者居多。在某些疾病情況下,核1~2葉的細胞百分率增多,稱為核左移;核4~5葉的細胞增多,稱為核右移。一般說核分葉越多,表明細胞越近衰老,但這不是絕對的,在有些疾病情況下,新生的中性粒細胞也可出現細胞核為5葉或更多葉的。桿狀核粒細胞則較幼稚,約占粒細胞總數的5%~10%,在機體受細菌嚴重感染時,其比例顯著增高。
中性粒細胞的胞質染成粉紅色,含有許多細小的淡紫色及淡紅色顆粒,顆粒可分為嗜天青顆粒和特殊顆粒兩種。嗜天青顆粒較少,呈紫色,約占顆粒總數的20%,光鏡下著色略深,體積較大;電鏡下呈圓形或橢圓形,直徑0.6~0.7μm,電子密度較高,它是一種溶酶體,含有酸性磷酸酶和過氧化物酶等,能消化分解吞噬的異物。特殊顆粒數量多,淡紅色,約占顆粒總數的80%,顆粒較小,直徑0.3~0.4μm,呈啞鈴形或橢圓形,內含鹼性磷酸酶、吞噬素、溶菌酶等。吞噬素具有殺菌作用,溶菌酶能溶解細菌表面的糖蛋白。
中性粒細胞具有活躍的變形運動和吞噬功能。當機體某一部位受到細菌侵犯時,中性粒細胞對細菌產物及受感染組織釋放的某些化學物質具有趨化性,能以變形運動穿出毛細血管,聚集到細菌侵犯部位,大量吞噬細菌,形成吞噬小體。吞噬小體先後與特殊顆粒及溶酶體融合,細菌即被各種水解酶、氧化酶、溶菌酶及其它具有殺菌作用的蛋白質、多肽等成分殺死並分解消化。由此可見,中性粒細胞在體內起著重要的防禦作用。中性粒細胞吞噬細胞後,自身也常壞死,成為膿細胞。中性粒細胞在血液中停留約6~7小時,在組織中存活約1~3天。
嗜酸性粒細胞:嗜酸性粒細胞(eosinophilic granulocyte,eosinophil)占白細胞總數的0.5%-3%。細胞呈球形,直徑10~15μm,核常為2葉,胞質內充滿粗大(直徑0.5~1.0μm)、均勻、略帶折光性的嗜酸性顆粒,染成桔紅色。電鏡下,顆粒多呈橢圓形,有膜包被,內含顆粒狀基質和方形或長方形晶體。顆粒含有酸性磷酸酶、芳基硫酸酯酶、過氧化物酶和組胺酶等,因此它也是一種溶酶體。
嗜酸性粒細胞也能作變形運動,並具有趨化性。它能吞噬抗原抗體復合物,釋放組胺酶滅活組胺,從而減弱過敏反應。嗜酸性粒細胞還能藉助抗體與某些寄生蟲表面結合,釋放顆粒內物質,殺滅寄生蟲。故而嗜酸性粒細胞具有抗過敏和抗寄生蟲作用。在過敏性疾病或寄生蟲病時,血液中嗜酸性粒細胞增多。它在血液中一般僅停留數小時,在組織中可存活8~12天。
嗜鹼性粒細胞:嗜鹼性粒細胞(basoophilic granulocyte,basophil)數量最少,占白細胞總數的0~15。細胞呈球形,直徑10-12μm。胞核分葉或呈S形或不規則形,著色較淺。胞質內含有嗜鹼性顆粒,大小不等,分布不均,染成藍紫色,可覆蓋在核上。顆粒具有異染性,甲苯胺藍染色呈紫紅色。電鏡下,嗜鹼性顆粒內充滿細小微粒,呈均勻狀或螺紋狀分布。顆粒內含有肝素和組胺,可被快速釋放;而白三烯則存在於細胞基質內,它的釋放較前者緩慢。肝素具有抗凝血作用,,組胺和白三烯參與過敏反應。嗜鹼性粒細胞在組織中可存活12-15天。
嗜鹼性粒細胞與肥大細胞,在分布、胞核的形態,以及顆粒的大小與結構上,均有所不同。但兩種細胞都含有肝素、組胺和白三烯等成分,故嗜鹼性粒細胞的功能與肥大細胞相似,但兩者的關系尚待研究。
單核細胞單核細胞(monocyte)占白細胞總數的3%~8%。它是白細胞中體積最大的細胞。直徑14~20μm,呈圓形或橢圓形。胞核形態多樣,呈卵圓形、腎形、馬蹄形或不規則形等。核常偏位,染色質顆粒細而鬆散,故著色較淺。胞質較多,呈弱嗜鹼性,含有許多細小的嗜天青顆粒,使胞質染成深淺不勻的灰藍色。顆粒內含有過氧化物酶、酸性磷酸酶、非特異性酯酶和溶菌酶,這些酶不僅與單核細胞的功能有關,而且可作為與淋巴細胞的鑒別點。電鏡下,細胞表面有皺褶和微絨毛,胞質內有許多吞噬泡、線粒體和粗面內質網,顆粒具溶酶體樣結構。
單核細胞具有活躍的變形運動、明顯的趨化性和一定的吞噬功能。單核細胞是巨噬細胞的前身,它在血流中停留1-5天後,穿出血管進入組織和體腔,分化為巨噬細胞。單核細胞和巨噬細胞都能消滅侵入機體的細菌,吞噬異物顆粒,消除體內衰老損傷的細胞,並參與免疫,但其功能不及巨噬細胞強。
淋巴細胞:淋巴細胞(lymphocyte)占白細胞總數的20%~30%,圓形或橢圓形,大小不等。直徑6~8μm的為小淋巴細胞,9~12μm的為中淋巴細胞, 13~20μm的為大淋巴細胞。小淋巴細胞數量最多,細胞核圓形,一側常有小凹陷,染色質緻密呈塊狀,著色深,核占細胞的大部,胞質很少,在核周成一窄緣,嗜鹼性,染成蔚藍色,含少量嗜天青顆粒。中淋巴細胞和大淋巴細胞的核橢圓形,染色質較疏鬆,故著色較淺,胞質較多,胞質內也可見少量嗜天青顆粒。少數大、中淋巴細胞的核呈腎形,胞質內含有較多的大嗜天青顆粒,稱為大顆粒淋巴細胞、電鏡下,淋巴細胞的胞質內主要是大量的游離核糖體,其他細胞器均不發達。
以往曾認為,大、中、小淋巴細胞的分化程度不同,小淋巴細胞為終末細胞。但目前普遍認為,多數小淋巴細胞並非終末細胞。它在抗原刺激下可轉變為幼稚的淋巴細胞,進而增殖分化。而且淋巴細胞也並非單一群體,根據它們的發生部位、表面特徵、壽命長短和免疫功能的不同,至少可分為T細胞、B細胞、殺傷(K)細胞和自然殺傷(NK)細胞等四類。
血液中的T細胞約占淋巴細胞總數的75%,它參與細胞免疫,如排斥異移體移植物、抗腫瘤等,並具有免疫調節功能。B細胞約占血中淋巴細胞總數的10%~15%。B細胞受抗原刺激後增殖分化為漿細胞,產生抗體,參與體液免疫(詳見免疫系統)。
3、血小板
血小板(platelet)是哺乳動物血液中的有形成分之一。它有質膜,沒有細胞核結構,一般呈圓形,體積小於紅細胞和白細胞。血小板在長期內被看作是血液中的無功能的細胞碎片。直到1882年義大利醫師J.B.比佐澤羅發現它們在血管損傷後的止血過程中起著重要作用,才首次提出血小板的命名。
血小板具有特定的形態結構和生化組成,在正常血液中有較恆定的數量(如人的血小板數為每立方毫米10~30萬),在止血、傷口癒合、炎症反應、血栓形成及器官移植排斥等生理和病理過程中有重要作用。
血小板只存在於哺乳動物血液中。低等脊椎動物圓口綱有紡錘細胞起凝血作用,魚綱開始有特定的血栓細胞。兩棲、爬行和鳥綱動物血液中都有血栓細胞,血栓細胞是有細胞核的梭形成橢圓形細胞,功能與血小板相似。無脊椎動物沒有專一的血栓細胞,如軟體動物的變形細胞兼有防禦和創傷治癒作用。甲殼動物只有一種血細胞,兼有凝血作用。
血小板為圓盤形,直徑1~4微米到7~8微米不等,且個體差異很大(5~12立方微米)。血小板因能運動和變形,故用一般方法觀察時表現為多形態。血小板結構復雜,簡言之,由外向內為3層結構,即由外膜、單元膜及膜下微絲結構組成的外圍為第1層;第2層為凝膠層,電鏡下見到與周圍平行的微絲及微管構造;第3層為微器官層,有線粒體、緻密小體、殘核等結構。
血細胞形態、數量、比例和血紅蛋白含量的測定稱為血像。患病時,血像常有顯著變化,故檢查血像對了解機體狀況和診斷疾病十分重要。
H. 血液是咋組成的
血液是流動在心臟和血管內的不透明紅色液體,主要成分為血漿、血細胞。血液中含有各種營養成分,如無機鹽、氧、代謝產物、激素、酶和抗體等,有營養組織、調節器官活動和防禦有害物質的作用。人體各器官的生理和病理變化,往往會引起血液成分的改變,故患病後常常要通過驗血來診斷疾病。
人體內的血液量大約是體重的7~8%,如體重60公斤,則血液量約4200~4800毫升。各種原因引起的血管破裂都可導致出血,如果失血量較少,不超過總血量的10%,則通過身體的自我調節,可以很快恢復;如果失血量較大,達總血量的20%時,則出現脈搏加快,血壓下降等症狀;如果在短時間內喪失的血液達全身血液的30%或更多,就可能危及生命。
血液有四種成分組成:血漿,紅細胞,白細胞,血小板。血漿約占血液的55%,是水,糖,脂肪,蛋白質,鉀鹽和鈣鹽的混合物。也包含了許多止血必需的血凝塊形成的化學物質。血細胞和血小板組成血液的另外45%。
血液分靜脈血和動脈血。動脈血在體循環(大循環)的動脈中流動的血液以及在肺循環(小循環)中從肺回到左心房的肺靜脈中的血液。動脈血含氧較多,含二氧化碳較少,呈鮮紅色。靜脈血血液中含較多二氧化碳的血液,呈暗紅色。注意並不是靜脈中流的血是靜脈血,動脈血中流的是動脈血,因為肺動脈中流的是靜脈血,肺靜脈中流的是動脈血。
[編輯本段]血液成分
血液由血漿和血細胞組成。
(一)血漿
血漿相當於結締組織的細胞間質,為淺黃色半透明液體,其中除含有大量水分以外,還有無機鹽、纖維蛋白原、白蛋白、球蛋白、酶、激素、各種營養物質、代謝產物等。這些物質無一定的形態,但具有重要的生理功能。
1L血漿中含有900~910g水(90%~91%)。65~85g蛋白質(6.5%~8.5% )和20g低分子物質(2%).低分子物質中有多種電解質和小分子有機化合物,如代謝產物和其他某些激素等。血漿中電解質含量與組織液基本相同。由於這些溶質和水分都很容易透過毛細血管與組織液交流,這一部分液體的理化性質的變化常與組織液平行。在血液不斷循環流動的情況下。血液中各種電解質的濃度,基本上代表了組織液中這些物質的濃度。
血漿功能是運載血細胞,運輸養料和廢物等。
(二)血細胞
在機體的生命過程中,血細胞不斷地新陳代謝。紅細胞的平均壽命約120天,顆粒白細胞和血小板的生存期限一般不超過10天。淋巴細胞的生存期長短不等,從幾個小時直到幾年。
血細胞及血小板的產生來自造血器官,紅血細胞、有粒白血細胞及血小板由紅骨髓產生,無粒白血細胞則由淋巴結和脾臟產生。
血細胞分為三類:紅細胞、白細胞、血小板。
1、紅細胞
紅細胞(erythrocyte,red blood cell)直徑7~8.5μm,呈雙凹圓盤狀,中央較薄(1.0μm),周緣較厚(2.0μm),故在血塗片標本中呈中央染色較淺、周緣較深(彩圖5- 2)。在掃描電鏡下,可清楚地顯示紅細胞這種形態特點。紅細胞的這種形態使它具有較大的表面積(約140μm2),從而能最大限度地適應其功能――攜O2和CO2。新鮮單個紅細胞為黃綠色,大量紅細胞使血液呈猩紅色,而且多個紅細胞常疊連一起呈串錢狀,稱紅細胞緡線。
紅細胞有一定的彈性和可塑性,細胞通過毛細血管時可改變形狀。紅細胞正常形態的保持需ATP供給能量,由於紅細胞缺乏線粒體,ATP由無氧酵解產生;一量缺乏ATP供能,則導致細胞膜結構改變,細胞的形態也隨之由圓盤狀變為棘球狀。這種形態改變一般是可逆的。可隨著ATP的供能狀態的改善而恢復。
成熟紅細胞無細胞核,也無細胞器,胞質內充滿血紅蛋白(hemoglobin,Hb)。血紅蛋白是含鐵的蛋白質,約占紅細胞重量的33%。它具有結合與運輸O2和CO2的功能,當血液流經肺時,肺內的O2分壓高,CO2分壓低,血紅蛋白即放出CO2而與O2結合;當血液流經其它器官的組織時,由於該處的CO2分壓高而O2分壓低,於是紅細胞即放出O2並結合CO2。由於血紅蛋白具有這種性質,所以紅細胞能供給全身組織和細胞所需的O2,帶走所產生的部分CO2。
正常成人每微升血液中紅細胞數的平均值,男性約400萬~500萬個,女性約350萬~450萬個。每100ml血液中血紅蛋白含量,男性約 12~15g,女性約10.5~13.5g。全身所有紅細胞表面積總計,相當於人體表面積的2000倍。紅細胞的數目及血紅蛋白的含量可有生理性改變,如嬰兒高於成人,運動時多於安靜狀態,高原地區居民大都高於平原地區居民,紅細胞的形態和數目的改變、以及血紅蛋白的質和量的改變超出正常范圍,則表現為病理現象。一般說,紅細胞數少於300萬/μ1為貧血,血紅蛋白低於10g/100ml則為缺鐵性貧血。此時常伴有紅細胞的直徑及形態的改變,如大紅細胞貧血的紅細胞平均直徑>9μm,小紅細胞貧血的紅細胞平均直徑<6μm。缺鐵性貧血的紅細胞,由於血紅蛋白的含量明顯降低,以致中央淡染區明顯擴大。
紅細胞的滲透壓與血漿相等,使出入紅細胞的水分維持平衡。當血漿滲透壓降低時,過量水分進入細胞,細胞膨脹成球形,甚至破裂,血紅蛋白逸出,稱為溶血(hemolysis);溶血後殘留的紅細胞膜囊稱為血影(ghost)。反之,若血漿的滲透壓升高,可使紅細胞內的水分析出過多,致使紅細胞皺縮。凡能損害紅細胞的因素,如脂溶劑、蛇毒、溶血性細菌等均能引起溶血。
紅細胞的細胞膜,除具有一般細胞膜的共性外,還有其特殊性,例如紅細胞膜上有ABO血型抗原。
外周血中除大量成熟紅細胞以外,還有少量未完全成熟的紅細胞,稱為網織紅細胞(reticulocyte)在成人約為紅細胞總數的0.5%~1.5%,新生兒較多,可達3%~6%。網織紅細胞的直徑略大於成熟紅細胞,在常規染色的血塗片中不能與成熟紅細胞區分。用煌焦藍作體外活體染色,可見網織紅細胞的胞質內有染成藍色的細網或顆粒,它是細胞內殘留的核糖體。核糖體的存在,表明網織紅細胞仍有一些合成血紅蛋白的功能。紅細胞完全成熟時,核糖體消失,血紅蛋白的含量即不再增加。貧血病人如果造血功能良好,其血液中網織紅細胞的百分比值增高。因此,網織紅細胞的計數有一定臨床意義,它是貧血等某些血液病的診斷、療效判斷和估計預指標之一。
紅細胞的平均壽命約120天。衰老的紅細胞雖無形態上的特殊樗,但其機能活動和理化性質都有變化,如酶活性降低,血紅蛋白變性,細胞膜脆性增大,以及表面電荷改變等,因而細胞與氧結合的能力降低且容易破碎。衰老的紅細胞多在脾、骨髓和肝等處被巨噬細胞吞噬,同時由紅骨髓生成和釋放同等數量紅細胞進入外周血液,維持紅細胞數的相對恆定。
2、白細胞
白細胞(leukocyte,white blood cell)為無色有核的球形細胞,體積比紅細胞大,能作變形運動,具有防禦和免疫功能。成人白細胞的正常值為4000~10000個/μ1。男女無明顯差別。嬰幼兒稍高於成人。血液中白細胞的數值可受各種生理因素的影響,如勞動、運動、飲食及婦女月經期,均略有增多。在疾病狀態下,白細胞總數及各種白細胞的百分比值皆可發生改變。
光鏡下,根據白細胞胞質有無特殊顆粒,可將其分為有粒白細胞和無粒白細胞兩類。有粒白細胞又根據顆粒的嗜色性,分為中性粒細胞、嗜酸性粒細胞用嗜鹼性粒細胞。無粒白細胞有單核細胞和淋巴細胞兩種。
中性粒細胞:中性粒細胞(neutrophilic granulocyte,neutrophil)占白細胞總數的50%-70%,是白細胞中數量最多的一種。細胞呈球形,直徑10-12μm,核染色質呈團塊狀。核的形態多樣,有的呈臘腸狀,稱桿狀核;有的呈分葉狀,葉間有細絲相連,稱分葉核。細胞核一般為2~5葉,正常人以2~3葉者居多。在某些疾病情況下,核1~2葉的細胞百分率增多,稱為核左移;核4~5葉的細胞增多,稱為核右移。一般說核分葉越多,表明細胞越近衰老,但這不是絕對的,在有些疾病情況下,新生的中性粒細胞也可出現細胞核為5葉或更多葉的。桿狀核粒細胞則較幼稚,約占粒細胞總數的5%~10%,在機體受細菌嚴重感染時,其比例顯著增高。
中性粒細胞的胞質染成粉紅色,含有許多細小的淡紫色及淡紅色顆粒,顆粒可分為嗜天青顆粒和特殊顆粒兩種。嗜天青顆粒較少,呈紫色,約占顆粒總數的20%,光鏡下著色略深,體積較大;電鏡下呈圓形或橢圓形,直徑0.6~0.7μm,電子密度較高,它是一種溶酶體,含有酸性磷酸酶和過氧化物酶等,能消化分解吞噬的異物。特殊顆粒數量多,淡紅色,約占顆粒總數的80%,顆粒較小,直徑0.3~0.4μm,呈啞鈴形或橢圓形,內含鹼性磷酸酶、吞噬素、溶菌酶等。吞噬素具有殺菌作用,溶菌酶能溶解細菌表面的糖蛋白。
中性粒細胞具有活躍的變形運動和吞噬功能。當機體某一部位受到細菌侵犯時,中性粒細胞對細菌產物及受感染組織釋放的某些化學物質具有趨化性,能以變形運動穿出毛細血管,聚集到細菌侵犯部位,大量吞噬細菌,形成吞噬小體。吞噬小體先後與特殊顆粒及溶酶體融合,細菌即被各種水解酶、氧化酶、溶菌酶及其它具有殺菌作用的蛋白質、多肽等成分殺死並分解消化。由此可見,中性粒細胞在體內起著重要的防禦作用。中性粒細胞吞噬細胞後,自身也常壞死,成為膿細胞。中性粒細胞在血液中停留約6~7小時,在組織中存活約1~3天。
嗜酸性粒細胞:嗜酸性粒細胞(eosinophilic granulocyte,eosinophil)占白細胞總數的0.5%-3%。細胞呈球形,直徑10~15μm,核常為2葉,胞質內充滿粗大(直徑0.5~1.0μm)、均勻、略帶折光性的嗜酸性顆粒,染成桔紅色。電鏡下,顆粒多呈橢圓形,有膜包被,內含顆粒狀基質和方形或長方形晶體。顆粒含有酸性磷酸酶、芳基硫酸酯酶、過氧化物酶和組胺酶等,因此它也是一種溶酶體。
嗜酸性粒細胞也能作變形運動,並具有趨化性。它能吞噬抗原抗體復合物,釋放組胺酶滅活組胺,從而減弱過敏反應。嗜酸性粒細胞還能藉助抗體與某些寄生蟲表面結合,釋放顆粒內物質,殺滅寄生蟲。故而嗜酸性粒細胞具有抗過敏和抗寄生蟲作用。在過敏性疾病或寄生蟲病時,血液中嗜酸性粒細胞增多。它在血液中一般僅停留數小時,在組織中可存活8~12天。
嗜鹼性粒細胞:嗜鹼性粒細胞(basoophilic granulocyte,basophil)數量最少,占白細胞總數的0~15。細胞呈球形,直徑10-12μm。胞核分葉或呈S形或不規則形,著色較淺。胞質內含有嗜鹼性顆粒,大小不等,分布不均,染成藍紫色,可覆蓋在核上。顆粒具有異染性,甲苯胺藍染色呈紫紅色。電鏡下,嗜鹼性顆粒內充滿細小微粒,呈均勻狀或螺紋狀分布。顆粒內含有肝素和組胺,可被快速釋放;而白三烯則存在於細胞基質內,它的釋放較前者緩慢。肝素具有抗凝血作用,,組胺和白三烯參與過敏反應。嗜鹼性粒細胞在組織中可存活12-15天。
嗜鹼性粒細胞與肥大細胞,在分布、胞核的形態,以及顆粒的大小與結構上,均有所不同。但兩種細胞都含有肝素、組胺和白三烯等成分,故嗜鹼性粒細胞的功能與肥大細胞相似,但兩者的關系尚待研究。
單核細胞單核細胞(monocyte)占白細胞總數的3%~8%。它是白細胞中體積最大的細胞。直徑14~20μm,呈圓形或橢圓形。胞核形態多樣,呈卵圓形、腎形、馬蹄形或不規則形等。核常偏位,染色質顆粒細而鬆散,故著色較淺。胞質較多,呈弱嗜鹼性,含有許多細小的嗜天青顆粒,使胞質染成深淺不勻的灰藍色。顆粒內含有過氧化物酶、酸性磷酸酶、非特異性酯酶和溶菌酶,這些酶不僅與單核細胞的功能有關,而且可作為與淋巴細胞的鑒別點。電鏡下,細胞表面有皺褶和微絨毛,胞質內有許多吞噬泡、線粒體和粗面內質網,顆粒具溶酶體樣結構。
單核細胞具有活躍的變形運動、明顯的趨化性和一定的吞噬功能。單核細胞是巨噬細胞的前身,它在血流中停留1-5天後,穿出血管進入組織和體腔,分化為巨噬細胞。單核細胞和巨噬細胞都能消滅侵入機體的細菌,吞噬異物顆粒,消除體內衰老損傷的細胞,並參與免疫,但其功能不及巨噬細胞強。
淋巴細胞:淋巴細胞(lymphocyte)占白細胞總數的20%~30%,圓形或橢圓形,大小不等。直徑6~8μm的為小淋巴細胞,9~12μm的為中淋巴細胞, 13~20μm的為大淋巴細胞。小淋巴細胞數量最多,細胞核圓形,一側常有小凹陷,染色質緻密呈塊狀,著色深,核占細胞的大部,胞質很少,在核周成一窄緣,嗜鹼性,染成蔚藍色,含少量嗜天青顆粒。中淋巴細胞和大淋巴細胞的核橢圓形,染色質較疏鬆,故著色較淺,胞質較多,胞質內也可見少量嗜天青顆粒。少數大、中淋巴細胞的核呈腎形,胞質內含有較多的大嗜天青顆粒,稱為大顆粒淋巴細胞、電鏡下,淋巴細胞的胞質內主要是大量的游離核糖體,其他細胞器均不發達。
以往曾認為,大、中、小淋巴細胞的分化程度不同,小淋巴細胞為終末細胞。但目前普遍認為,多數小淋巴細胞並非終末細胞。它在抗原刺激下可轉變為幼稚的淋巴細胞,進而增殖分化。而且淋巴細胞也並非單一群體,根據它們的發生部位、表面特徵、壽命長短和免疫功能的不同,至少可分為T細胞、B細胞、殺傷(K)細胞和自然殺傷(NK)細胞等四類。
血液中的T細胞約占淋巴細胞總數的75%,它參與細胞免疫,如排斥異移體移植物、抗腫瘤等,並具有免疫調節功能。B細胞約占血中淋巴細胞總數的10%~15%。B細胞受抗原刺激後增殖分化為漿細胞,產生抗體,參與體液免疫(詳見免疫系統)。
3、血小板
血小板(platelet)是哺乳動物血液中的有形成分之一。它有質膜,沒有細胞核結構,一般呈圓形,體積小於紅細胞和白細胞。血小板在長期內被看作是血液中的無功能的細胞碎片。直到1882年義大利醫師J.B.比佐澤羅發現它們在血管損傷後的止血過程中起著重要作用,才首次提出血小板的命名。
血小板具有特定的形態結構和生化組成,在正常血液中有較恆定的數量(如人的血小板數為每立方毫米10~30萬),在止血、傷口癒合、炎症反應、血栓形成及器官移植排斥等生理和病理過程中有重要作用。
血小板只存在於哺乳動物血液中。低等脊椎動物圓口綱有紡錘細胞起凝血作用,魚綱開始有特定的血栓細胞。兩棲、爬行和鳥綱動物血液中都有血栓細胞,血栓細胞是有細胞核的梭形成橢圓形細胞,功能與血小板相似。無脊椎動物沒有專一的血栓細胞,如軟體動物的變形細胞兼有防禦和創傷治癒作用。甲殼動物只有一種血細胞,兼有凝血作用。
血小板為圓盤形,直徑1~4微米到7~8微米不等,且個體差異很大(5~12立方微米)。血小板因能運動和變形,故用一般方法觀察時表現為多形態。血小板結構復雜,簡言之,由外向內為3層結構,即由外膜、單元膜及膜下微絲結構組成的外圍為第1層;第2層為凝膠層,電鏡下見到與周圍平行的微絲及微管構造;第3層為微器官層,有線粒體、緻密小體、殘核等結構。
血細胞形態、數量、比例和血紅蛋白含量的測定稱為血像。患病時,血像常有顯著變化,故檢查血像對了解機體狀況和診斷疾病十分重要。
[編輯本段]血型
血型(blood groups;blood types)是以血液抗原形式表現出來的一種遺傳性狀。狹義地講,血型專指紅細胞抗原在個體間的差異;但現已知道除紅細胞外,在白細胞、血小板乃至某些血漿蛋白,個體之間也存在著抗原差異。因此,廣義的血型應包括血液各成分的抗原在個體間出現的差異。通常人們對血型的了解往往僅局限於ABO血型以及輸血問題等方面,實際上,血型在人類學、遺傳學、法醫學、臨床醫學等學科都有廣泛的實用價值,因此具有著重要的理論和實踐意義,同時,動物血型的發現也為血型研究提供了新的問題和研究方向。
◆ABO血型
ABO血型可分為A、B、AB和O型等4種血型。紅細胞含A抗原和H抗原的叫做A型,A型的人血清中含有抗B抗體;紅細胞含B抗原和H抗原的叫做B型,B型的人血清中含有抗A抗體;紅細胞含A抗原、B抗原和H抗原,叫做AB型,這種血型的人血清中沒有抗A抗體和抗B抗體;紅細胞只有H抗原,叫做O型,O型的人血清中含有抗A抗體和抗B抗體。
ABO血型物質除存在於紅細胞膜上外,還出現於唾液、胃液、精液等分泌液中。中國60%漢族人唾液中有ABO血型物質。血型物質的化學本質是指構成血型抗原的糖蛋白或糖脂,而血型的特異性主要取決於血型抗原糖鏈的組成(即血型抗原的決定簇在糖鏈上)。A、B、H3種血型抗原化學結構的差異,僅在於糖鏈末端的1個單糖。A抗原糖鏈末端為N-乙醯半乳糖,而B抗原糖鏈末端為半乳糖,H抗原和A、B抗原相比則糖鏈末端少1個半乳糖或N-乙醯半乳糖。1981年已有人用綠咖啡豆酶(半乳糖苷酶)作用於B型紅細胞,切去B抗原上的半乳糖,從而使B型轉變成O型獲得成功。
E.von鄧格恩及L.希爾斯費爾德於1911年發現A血型的亞型。他們看到不同A型人的紅細胞與抗A血清發生凝集反應的強度不一,在反應弱的A型人血清中還有一種抗體能與反應強的A型紅細胞發生凝集反應。據此認為在A型中存在亞型;即A1及A2亞型。A1.型紅細胞與抗A血清(來自B或O型人)反應強,而A2型紅細胞與抗A血清反應弱。而且在部分A2型人的血清中,除存在的抗B外,還有不規則的抗A1。在B型人血清中有兩種抗體:抗A及抗A1。抗A能與A1及A2細胞發生反應;抗A1隻與A1細胞發生反應。A1型紅細胞上有A及A1兩種抗原。A2細胞上只有A抗原。AB型也可分為A1B及A2B等亞型。此外還有一些其他亞型。
◆MN血型
紅細胞膜上另一類血型抗原叫MN抗原,即紅細胞膜上的血型糖蛋白A。它在SOS凝膠電泳譜上顯示兩條區帶,即PAS-1和PAS-2,血型糖蛋白A是兩者的二聚物。已知血型糖蛋白A由131個氨基酸組成,其一級結構已測定(圖2)。血型糖蛋白A的肽鏈呈三節式結構,中間第73~92號氨基酸為疏水性肽鏈,可橫穿膜脂層;N端肽鏈位於膜外側,與血型活性有關,在這段肽鏈上分布有15條O-糖苷鍵型糖鏈和1條N-糖苷鍵型糖鏈,糖鏈中唾液酸占紅細胞膜上全部唾液酸的一半以上;C端肽鏈位於膜內側,含較多酸性氨基酸。
MN抗原由M抗原和N抗原兩部分組成,如果用神經氨酸酶將M抗原切去1個唾液酸(N-乙醯神經氨酸),則為N抗原,如再切去一個唾液酸則抗原性完全失去。MN抗原的抗原性還和肽鏈上的氨基有關,若將氨基用乙醯基保護後即失去抗原性。
◆白細胞血型——HLA
HLA是人類白細胞抗原中最重要的一類。與紅細胞血型相比,人們對白細胞抗原的了解較晚,人體第一個白細胞抗原Mac是1958年法國科學家J.多塞發現的。HLA是人體白細胞抗原的英文縮寫,已發現HLA抗原有144種以上,這些抗原分為A、B、C、D、DR、DQ和DP7個系列,而且HLA在其他細胞表面上也存在。
HLA抗原是一種糖蛋白(含糖為9%),其分子結構與免疫球蛋白極相似(圖3)。HLA分子由4條肽鏈組成(含2條輕鏈和2條重鏈),重鏈上連接2條糖鏈。HLA分子部分鑲嵌在細胞膜的雙脂層中,其插入膜的部分相當於免疫球蛋白IgG的Fc區段,輕鏈為β-微球蛋白。由於分子結構上的相似,故HLA與有保衛功能的免疫防禦系統密切相關。
此外,HLA和紅細胞血型一樣都受遺傳規律的控制。決定HLA型的基因在第6對染色體上。每個人分別可從父母獲得一套染色體,所以一個人可以同時查出A、B、C、D和DR5個系列中的5~10種白細胞型,因此表現出來的各種白細胞型有上億種之多。在無血緣關系的人間找出HLA相同的兩個是很困難的。但同胞兄弟姊妹之間總是有1/4機會HLA完全相同或完全不同。因此法醫鑒定親緣關系時,HLA測定是最有力的工具。
輸血
應以輸同型血為原則,只有在沒有同性血且十分緊急的情況中,才能輸入異性血。在這種情況下,O型血可以輸給各類血型,AB型血的病人也可以接受任何血型的血液。
6月14日「世界獻血者日」
[編輯本段]血液循環
血液循環是心臟節律性的搏動推動血液在心血管系統中按一定方向循環往復地流動。血液循環是英國哈維根據大量的實驗、觀察和邏輯推理於1628年提出的科學概念。然而限於當時的條件,他並不完全了解血液是如何由動脈流向靜脈的。1661年義大利馬爾庇基在顯微鏡下發現了動、靜脈之間的毛細血管,從而完全證明了哈維的正確推斷。動物在進化過程中,血液循環的形式是多樣的。循環系統的組成有開放式和封閉式;循環的途徑有單循環和雙循環。人類血液循環是封閉式的,由體循環和肺循環兩條途徑構成的雙循環。血液由左心室射出經主動肪及其各級分支流到全身的毛細血管,在此與組織液進行物質交換,供給組織細胞氧和營養物質,運走二氧化碳和代謝產物,動脈血變為靜脈血;再經各級表肪匯合成上、下腔靜脈流回友心房,這一循環為體循環。血液由右心室射出經肺動脈流到肺毛細血管,在此與肺泡氣進行氣體交換,吸收氧並排出二氧化碳,靜脈血變為動脈血;然後經肺靜脈流回左心房,這一循環為肺循環。
[編輯本段]血液的功能
血液在人體生命活動中主要具有四方面的功能。
①運輸。運輸是血液的基本功能,自肺吸入的氧氣以及由消化道吸收的營養物質,都依靠血液運輸才能到達全身各組織。同時組織代謝產生的二氧化碳與其他廢物也賴血液運輸到肺、腎等處排泄,從而保證身體正常代謝的進行。血液的運輸功能主要是靠紅細胞來完成的。貧血時,紅細胞的數量減少或質量下降,從而不同程度地影響了血液這一運輸功能,出現一系列的病理變化。
②參與體液調節。激素分泌直接進入血液,依靠血液輸送到達相應的靶器官,使其發揮一定的生理作用。可見,血液是體液性調節的聯系媒介。此外,如酶、維生素等物質也是依靠血液傳遞才能發揮對代謝的調節作用的。
③保持內環境穩態。由於血液不斷循環及其與各部分體液之間廣泛溝通,故對體內水和電解質的平衡、酸鹼度平衡以及體溫的恆定等都起決定性的作用。
④防禦功能。機體具有防禦或消除傷害性刺激的能力,涉及多方面,血液體現其中免疫和止血等功能。例如,血液中的白細胞能吞噬並分解外來的微生物和體內衰老、死亡的組織細胞,有的則為免疫細胞,血漿中的抗體如抗毒素、溶菌素等均能防禦或消滅入侵機體的細菌和毒素。上述防禦功能也即指血液的免疫防禦功能,主要靠白細胞實現。此外,血液凝固對血管損傷起防禦作用。
⑤調節體溫。
I. 血液是怎麼產生的
人和大多數動物在受到創傷後,都會從傷口流出紅色的液體,這就是血液。血液主要由血漿及血細胞組成,前者占血液的50%~60%,後者佔40%~50.血細胞包括了白細胞、紅細胞和血小板3種有形成分。
當我們人類的胚胎還在母親的子宮里時,血細胞就開始生成了。胚胎1~2月時,卵黃囊最先造血;2~6個月後,卵黃囊逐漸萎縮退化,肝臟開始造血,它不但能分化出初級的原始紅細胞,而且能分化出次級原始紅細胞,這些細胞發育成熟為紅細胞,經血竇進入血液。同時在3個月左右,脾臟也參與造血,主要生成紅細胞、粒細胞、淋巴細胞及單核細胞。至第5個月時,脾臟造血功能衰退,僅製造淋巴細胞及單核細胞,這一造血活動則會維持終身。
自胚胎的第4個月起,主要由骨髓造血,最初僅製造粒細胞,繼之還製造紅細胞和巨核細胞,同時,胸腺及淋巴結亦開始造血活動,胸腺生成淋巴細胞,至出生後仍保持此功能,淋巴結則主要生成淋巴細胞及漿細胞。
出生後,骨髓幾乎是造血的唯一器官(在正常情況下)並維持終身。嬰兒和兒童早期,他們的骨髓中充滿了造血的紅骨髓;5~7歲時,骨髓腔內出現不具造血功能的脂肪細胞,並逐年增多,形成黃骨髓,不過這種黃骨髓仍具有潛在的造血能力。從胚胎後期至生後終身,骨髓是主要的造血器官,骨髓中的造血幹細胞生成各種血細胞,造血幹細胞是各種血細胞的「祖先」,幹細胞在骨髓適宜條件和造血因子調控下生成子細胞後,依靠各種營養,從原始細胞發育為成熟的各系細胞,細胞成熟後進入血液,維持正常的生理功能。骨髓每秒產生約200萬個紅細胞,200萬個血小板和70萬個粒細胞。
J. 我想知道軟體動物的血怎麼造出來的
不僅軟體動物,其他低等動物的血液都是由細胞分化產生的。血液也是由細胞組成的。骨髓是細胞高度分化後產生了專門造血的組織,而低等動物還沒有進化出造血組織,僅僅是簡單的分化。