1. 動物的骨骼系統有哪些構造
動物的骨骼系統:人和脊椎動物器官系統之一。包括骨和軟骨兩部分,借韌帶連接,構成骨骼系統。按其所在部位,分中軸骨和附肢骨兩部分。前者包括顱(頭)骨和軀干骨;後者包括肩帶、腰帶和四肢骨。骨骼系統有支持軀體,保護內臟器官,供肌肉附著,作運動的杠桿等作用。骨是鈣和磷的儲存場所。骨髓腔在成體動物的身體中還能製造血細胞。
肌肉系統是一個通過其本身能收縮的特性使動物機體進行各種動作的系統。脊椎動物的肌肉系統大體可分為體肌和臟肌兩類。體肌是由橫紋肌組成的具有一定形態的肌肉塊,分布於皮膚下層軀幹部的一定位置,附著在骨骼上,受運動神經的支配。臟肌是平滑肌,形成內臟器官的肌肉部分,受植物性神經的支配,不能隨意運動。心臟的肌肉,雖在組織學上與一般的平滑肌不同,但因心臟屬於內臟,所以心肌也可列入臟肌的范疇。
2. 怎樣區分動物有無脊椎
1、無脊椎動物的神經系統呈索狀,位於消化管的腹面;而脊椎動物為管狀,位於消化管的背面。
2、無脊椎動物的心臟位於消化管的背面;脊椎動物的位於消化管的腹面。
3、無脊椎動物無骨骼或僅有外骨骼,無真正的內骨骼和脊椎骨;脊椎動物有內骨骼和脊椎骨。
3. 有內骨骼的動物有哪些
蜜蜂,蝴蝶,蜻蜓、蒼蠅````````````
4. 兔、魚、龜的骨骼結構中分別有什麼骨骼各個骨骼各有什麼作用
循環系統是生物體的體液(包括血液、淋巴和組織液)及其藉以循環流動的管道組成的系統。從動物形成心臟以後循環系統分為心臟和血管兩大部分,叫做心血管系統。循環系統是生物體內的運輸系統,它將消化道吸收的營養物質和由鰓或肺吸進的氧輸送到各組織器官並將各組織器宮的代謝產物通過同樣的途徑輸入血液,經肺、腎排出。它還輸送熱量到身體各部以保持體溫,輸送激素到靶器官以調節其功能。高等動物的循環系統還有附加的功能:如機體的保護作用;將血液運送到受傷或感染部位,包括白細胞和免疫蛋白(抗體)、凝血物質(在受傷部位形成纖維蛋白網);將身體儲存的脂肪和糖運到用場等。無脊椎動物的循環系統多為開放型循環(參見彩圖插頁第39頁);血液由「心」經血管流入組織間隙形成的血竇直接或經靜脈回心。血竇中血液與組織液、淋巴液相混,無管道將它們隔離,因此開放型循環不存在由微動脈、毛細血管、微靜脈形成的微循環,有些連靜脈也沒有,血液由血竇經心門直接入心。這是低級形式的循環系統。其特點是血管壁彈性小,不能支持較高的血壓,因此它們的血壓很低,血液重新分配的調節和血流速度很慢。少數無脊椎動物如環節動物的蚯蚓等和部分軟體動物如章魚等開始有封閉型循環。血管系統開始形成了微循環,血流經微循環、靜脈回心,由於心血管系統形成了完整的管道,而且血管壁彈性大,能支持較高的血壓,因此血壓較高,血液重新分配的調節和血流速度也較快,是高級形式的循環系統。除極少數例外(如盲鰻等),脊椎動物絕大多數都有封閉式循環。脊椎動物從爬行動物、鳥類到哺乳動物的心臟都有兩心房和兩心室。這種心臟實際上形成兩個泵。左心室泵血到動脈,再到毛細血管與組織細胞進行物質交換,送去養分帶走代謝廢物經靜脈回右心房,叫做體循環,因為線路較長,也叫大循環。血液經右心房、右心室,肺動脈到肺進行氣體交換,放出二氧化碳,帶走氧,然後經肺靜脈將含氧豐富的新鮮血液運回左心房,叫做肺循環,因路線較短,也叫小循環。部分組織液進入另一套封閉的管道系統,形成淋巴液,經小淋巴管逐步匯成大淋巴管,經左側的胸導管和右側的大淋巴管分別進入左、右鎖骨下靜脈,形成淋巴循環(參見彩圖插頁第39頁)。血液循環受神經體液因素的調節,這些因素在中樞神經高級部位的整合下能使心血管系統保持適當的血壓和血流,這是確保各組織器官正常物質交換,維持正常功能活動的先決條件。血液只有在全身不停地循環流動才能完成其多種功能,血液循環的停止是死亡的前兆,具有最重要的生理意義。到達各器宮的各有其特點的血液循環叫做特殊區域循環或器官循環。這種循環在高等動物中以腦循環和冠狀循環最為重要,因為二者的短時阻斷都將導致嚴重的後果乃至死亡。冠脈阻斷後幾乎立即使心搏停止,腦循環阻斷後腦細胞4~6分鍾後死亡。
血液循環類型的進化
各門類動物的循環系統的結構和功能可扼要歸納為表1。單細胞生物和多細胞生物包括植物細胞都可以看到最簡單形式的循環——細胞質流動,即原生質流動。
鳥和哺乳動物心臟的分隔和肺循環與體循環的分離是完全的。這樣會產生一個重要結果:肺循環的血壓大大低於體循環的血壓。在人肺動脈壓不過20~30毫米汞柱,約為體動脈壓的1/5。這樣大的差別如果二者的分離不完全是不可能的。完全分離以後,動靜脈血不再相混,大動脈中全是含氧多的鮮血,結果各種組織可得更多的氧,使代謝水平提高,適應環境的能力大為增強。鳥和哺乳動物大多為恆溫動物,這與循環系統的完善有關。
心臟的結構和功能
血管系統的結構和功能
血管壁具有豐富的彈性纖維和平滑肌,這使血管能被動的擴展和主動的收縮。動脈、靜脈和毛細血管各有其結構特徵。動脈與相應的靜脈比有較厚的壁,大動脈的彈性纖維和平滑肌成分較多,隨著動脈分枝逐漸變細,壁中平滑肌所佔的比例越來越大。毛細血管是血管系統中最小的血管,由一層細胞構成。血液與組織間的物質交換都經過毛細血管進行。靜脈管壁比相應動脈的?3��稈�芎臀⒕猜觶ㄐ【猜觶┩猓�淥��⒕猜靄�ㄎ⒍�觶ㄐ《�觶┒加釁交�〔悖��癖〔煌�K�醒�艿哪諛ざ加梢徊隳諂は赴�鉤傘V心せ蛑脅閿善交�〉�韻宋�桶紫宋�鉤桑�餑ぃㄍ獠悖┯山岬拮櫓�鉤傘2溉槎�鏌怨肺���溲�芟低車囊恍┎舛可�?,由表2可見大動脈管隨分枝的增多,血管的直徑變小,血管數目增多,總橫斷面積與血管數相應顯著增大。狗的腸系膜毛細血管的總橫斷面積約為主動脈的800倍。從小靜脈開始,靜脈管逐步匯合成較粗而數目減少,總橫斷面積也相應減小,直到腔靜脈,它的橫斷面積最小,但稍大於主動脈。靜脈系統的血量(680毫升)比動脈系統的血量(190毫升)約大3.6倍。由於靜脈血系統容量最大,所以也叫容量血管。由於小動脈、微動脈的緊張性變化在外周阻力變化中作用最大,所以也稱它們為阻力血管。
循環血與存儲血人的全身血量約占體重的6~8%。全身血液並非都在心血管系統中流動而有一部分流動極慢甚至停滯不動的血存儲在脾、肝、皮膚、肺等部。流動的血叫循環血,不流動或流動極慢的血叫存儲血。那些存儲血液的器官叫做儲血庫或簡稱血庫。儲血庫可以調節循環血量,其中以脾的作用最大。靜息時脾臟鬆弛,與循環血液完全隔離,可以儲存全身總血量的1/6左右。其中血細胞比容較大,血細胞數約可達全身紅細胞總數的1/3。當劇烈運動、大出血、窒息或血中缺氧時,在神經體液因素調節下,脾臟收縮,放出大量含血細胞很多的血液(比循環血多40%)到心血管中增加循環血量以應急需。但是,無論是循環血,還是存儲血都受到血量變動的影響,血量和血細胞的過多都可引起人體的不良反應,甚至病變。
脾、肝、肺和皮膚的儲血功能刺激內臟神經能使脾臟迅速強烈地收縮,容積顯著減?T詡躚狗瓷渲釁⑷蒓�黽櫻�友狗瓷渲釁⑷蒓�跣 I鏨舷偎匾�鵪⒃嗟氖賬酢F⑿×罕繞交�《隕鏨舷偎馗��舾校�摯墒さ齲?929)。在脾臟非條件反射基礎之上可以建立脾臟收縮的條件反射,從而闡明了大腦皮層對脾臟活動的調節作用。肝和肺也有儲血庫功能,雖然它們與循環血流並未完全隔離,但因流動很慢可以把它們看作儲血庫。肝靜脈收縮在一定時間內使流入血量大於流出血量,所存的血液分布在肝內舒張的血管之中,根據肺血管舒張的程度象肝一樣,肺也可以存儲或多或少的血液。
皮膚乳頭下血管叢舒張時能存儲大量血液(可達1升)。此處血流很慢甚至停滯不動。皮膚很多部位的動靜脈吻合舒張時使大量存血暫時與循環血流隔離。站立時循環血量減少,可能是因為有相當多的血流入下肢皮膚血管叢所致。
血管運動的神經調節
血管的收縮和舒張叫做血管運動,支配血管舒縮的神經叫血管運動神經。使血管收縮的神經叫血管收縮神經,簡稱縮血管神經,使血管舒張的神經叫血管舒張神經,簡稱舒血管神經。動靜脈血管都有神經分布,其中以小動脈、微動脈和動靜脈吻合支的神經分布最密,全部血管都有縮血管神經纖維,部分血管兼有收縮和舒張兩種神經纖維。
縮血管神經 內臟器官和皮膚血管的縮血管神經作用最大,當刺激腹腔內臟主要縮血管神經——大內臟神經時,引起內臟血管床的廣泛收縮導致體循環血壓顯著升高。縮血管神經屬交感神經系統,由腎上腺素能纖維(末梢釋放去甲腎上腺素的纖維)組成。縮血管神經對小動脈的調節有重要意義,因為它能保持動脈血壓的恆定從而保證各器官組織充足的血液供應。縮血管神經能使血管平滑肌經常保持一定緊張狀態。這是因為它有不斷的神經沖動發放。各器官血管都有縮血管纖維,但其緊張性沖動的發放頻率各有不同。內臟血管的交感纖維的緊張性發放最高;皮膚、骨骼肌血管的有中等度的緊張性發放,腦部縮血管纖維的緊張性發放最低,所以腦血管較少受到縮血管神經的影響而經常處於舒張狀態。
舒血管神經 德國生理學家高茲發現在慢性實驗中切斷坐骨神經數日後刺激其末梢可以看到後肢血管的明顯舒張反應。塔爾哈諾夫切斷坐骨神經後立即刺激其末梢端得到的卻是縮血管反應。所以出現不同反應是因為坐骨神經中兼有收縮和舒張纖維,受刺激後,一般舒張纖維的作用被壓抑而只表現收縮反應。但縮血管纖維變性較快,切斷後3~4天就失去興奮的能力,而舒血管纖維切斷6~10天仍能興奮,所以在慢性實驗中3~4天後刺激這種混合神經會出現舒張反應。一般傳出神經都含有血管舒張和收縮兩種纖維。舒血管神經的來源性質復雜,共有以下3種:
副交感舒血管神經 是主要的舒血管神經。其中面神經(Ⅶ)和吞咽神經(Ⅸ)的舒張纖維支配唾液腺、淚腺、舌及口腔和咽部粘膜等區域的血管;盆神經的副交感舒血管支配直腸、膀胱和外生殖器等部的血管,使之能使血管舒張。舒血管纖維末梢釋放的遞質是乙醯膽鹼,叫做膽鹼能纖維。C.貝爾納1854年認為鼓索神經是舒血管神經曾被肯定了近100年。以後德國生理學家R.P.H.海登海因1872年最先對此提出質疑,根據鼓索神經引起下頜下腺血管舒張反應不能用阿托品阻斷。1941年英國生理學家J.巴克羅夫特提出下頜下腺血管的這種舒張反應可能由腺細胞代謝產物所引起。這種看法由S.M.希爾頓和G.P.劉易斯在1955年所證實;他們發現刺激鼓索神經能使頜下腺細胞分泌賴氨醯緩激肽,這種多肽能迅速變成舒緩激肽,二者都是強血管舒張劑。從而否定了鼓索神經是舒血管神經的論斷。
交感舒血管神經 支配骨骼肌血管的交感神經干中除縮血管纖維外,還有舒血管纖維。這種纖維的來源雖是交感神經,但卻能使血管舒張,其遞質也是乙醯膽鹼,所以叫做膽鹼能交感舒血管纖維。
背根逆向傳導的舒血管作用 切斷脊神經背根,刺激其外周端,沖動可以逆向傳導到外周引起所支配皮膚血管的舒張反應。這種現象可能是反常的,但1901年英國生理學家貝利斯根據大量材料認為背根中傳入神經元的軸突可分兩支,一支到感受器,另一支到血管壁,受刺激後使血管舒張。這種分支還可以到小動脈及前毛細血管壁,引起它們的舒張反應,這種逆向傳導引起效應器的反應叫做軸突反射,刺激小塊皮膚可引起遠離刺激部位的皮膚血管舒張,此反應在切斷一切到該區的神經仍可發生。這是軸突反射存在的重要證據。但在神經切斷數日後,反應消失,因神經纖維已經變性。
血管運動中樞
中樞神經系統中調節血管運動的神經細胞群叫做血管運動中樞。它的高級中樞在大腦皮層,低級中樞在皮層下從下丘腦直到脊髓。血管運動中樞與心搏調節中樞的活動關系非常密切,在心血管系統反射中兩者常同時出現。心搏加速反射常伴有血管收縮反射;心搏減慢的反射多伴有血管舒張反射。這是因為這些中樞在腦和脊髓中相距很近。
脊髓血管運動中樞 血管運動的低級中樞,位於脊髓的胸1至腰2節段之間。橫斷脊髓的實驗發現橫斷部位越高,血壓下降越多。胸部脊髓橫斷處的刺激引起血壓上升,頸部脊髓切斷後,最初血壓下降,不久又可上升,全毀脊髓則血壓下降,不能恢復。脊髓縮血管中樞由胸腰部心交感和縮血管神經元組成,能整合各路神經沖動,具有緊張性活動可使脊髓動物(只保留脊髓的動物)保持較高的血壓。縮血管纖維起源於脊髓胸腰各段。在完整機體中脊髓縮血管中樞的活動受延髓等高級中樞的控制。
延髓血管運動中樞 用細小的針形電極刺激狗貓等動物延髓第四腦室底部左右下凹區,可使動脈血壓升高,叫延髓加壓區,即縮血管中樞。此區還能引起心搏加速加強和其他交感性反應,是延髓水平的交感中樞。延髓加壓區包括延髓前2/3的網狀結構背部外側的大部。其下行纖維到達脊髓縮血管神經元,破壞延髓神經元或切斷其下行纖維則血壓下降。脊髓縮血管神經元的緊張性活動由延髓網狀結構中神經元群的緊張性活動引起。一些主要血管運動反射也多通過這些神經元群來實現。從1936年起到1938年止以林可勝為首的中國生理學家陳梅伯、王世溶、易見龍等對延髓血管運動中樞進行了系統的研究,並連續在中國生理學雜志發表了一系列有關加壓中樞(交感神經中樞)和減壓中樞(交感抑制中樞)的高質量論文。證明延髓第四腦室側在聲紋和下凹之間前庭核附近有交感神經中樞,全面研究了加壓區對內臟功能的影響,發現刺激加壓區可使心、腸、腎、子宮和腿部的血管收縮,並能引起許多器官的交感性反應。此外還對交感神經中樞的上、下行束道做了定位研究。論證了延髓交感神經抑制中樞(減壓區)的存在。林可勝和呂運明對各綱脊椎動物包括:魚、蟾蜍、龜、雞、山羊、豚鼠、豬、家兔、貓、狗、刺蝟、猴的延髓交感中樞定位進行了研究。發現這些動物的加壓中樞都與前庭區有密切關系,低等脊髓動物的加壓區在前庭區的頭側,哺乳動物的加壓區在前庭區的尾側。動物越低等加壓區對刺激的反應的靈敏度越低,加壓作用越不明顯,作者認為這是因為它們的交感神經不夠發達所致。電刺激延髓第四腦室閂部附近引起降壓反應,因此叫做減壓區。包括延髓後1/3網狀結構腹側的廣大區域。此區的減壓作用,不是舒血管神經的興奮的結果,而由縮血管中樞活動的抑制所引起。血中二氧化碳過多,加強血管收縮中樞興奮,使血管收縮,血壓升高;二氧化碳過少,降低收縮中樞的興奮,血管舒張,血壓下降。延髓與脊髓血管運動中樞都能對血中二氧化碳過多產生加壓反射,但延髓中樞比脊髓中樞更為敏感。各種傳入沖動都能影響延髓縮血管中樞的活動,特別是頸動脈竇主動脈弓減壓反射影響最大,因而在血壓調節機制中最為重要。
延髓以上的血管運動中樞 中腦和前腦都有血管運動中樞。狗腦的S狀回受刺激時也能引起減壓反應。刺激中腦腹部可以引起典型的垂體加壓反應。在紅核水平切斷腦干使血壓發生顯著變化(常與呼吸變化有關)。刺激小腦也能引起血壓變化,這與小腦對交感神經的影響有關。間腦的下丘腦是整個植物性神經系統的高級中樞,能引起血壓的顯著變化。去大腦皮層而保留間腦的狗出現非常復雜的心血管反射,常使血壓升高和心搏加速。大腦皮層發育不全的新生兒,間腦在循環調節中起主導作用。發育完善的大腦皮層對血液循環具有最強的調節整合作用,大腦皮層通過條件反射的建立控制著心血管系統的活動,使血液循環能迅速適應各種復雜的生存條件。
血管運動反射
心血管系統中很多部位分布著壓力感受器。當受到機械刺激時都能引起血管的反射性運動導致動脈血壓的改變,其中以頸動脈竇和主動脈弓區最為敏感,二區受刺激之後可以引起減壓反射。較小的血管乃至一般組織也有壓力感受器的分布,也能反射性地引起血壓下降(見血壓),但反應較弱。
羅文氏反射 1866年S.羅文發現刺激一個肢體或某一器官的傳入神經時,該肢體或器官的血管舒張而其他部位的血管收縮,同時動脈血壓上升,叫做羅文氏反射。例如刺激兔的足背神經引起該神經支配的下肢血管舒張,容積加大,身體其他部分的血管則起收縮反應,導致加壓反射,這對血液向活動較多的器官集中,對血液的重新分配有明顯作用。
迷走加壓反射 腔靜脈內血壓下降可以刺激迷走神經加壓纖維末梢,引起血管床的廣泛收縮導致的反射性血壓升高。這一反射多見於大失血,此時靜脈壓降低,如迷走神經完整無損,由此反射的作用動脈血壓可不下降或下降不多。切斷迷走神經後血壓下降較多。用可卡因塗在右心房上的效果與切斷迷走神經相同,都可抑制迷走加壓反射,導致失血時更大幅度的血壓下降。
高級中樞對血管運動的調節
小腦、中腦、下丘腦對血管運動的調節 小腦、中腦受刺激時都能引起血管運動反應,刺激小腦前葉皮層可抑制血管運動中樞,出現加壓或減壓反射。下丘腦是更重要的植物性神經中樞。電刺激動物下丘腦後側部引起肢體血管收縮;熱刺激下丘腦前部引起肢體皮膚血管的舒張。下丘腦是體溫調節中樞,它對血管緊張性收縮的影響是體溫調節機制中的一個重要部分。熱刺激下丘腦使皮膚血管舒張,有助於體溫過高時的散熱,在保持體溫恆定機制中有重要作用。大腦皮層是調節整合血管運動的最高級中樞,所謂整合是把不同生理反應綜合組成互相協調統一的有效生理過程。在皮層功能減弱乃至消失時,下丘腦是各種植物性功能的整合中樞,正常情況下它在大腦皮層的控制下起作用,只有大腦皮層才能使機體各種功能包括心血管運動與內外環境高度統一起來完成最復雜的調節整合。電刺激大腦皮層運動區和杏仁核的有些部位引起加壓反應,心搏加速;刺激皮層額葉眶部、顳葉前部、梨狀區和杏仁核的其他部位引起減反應;刺激扣帶回、眶回和腦島等區都能引起明顯的血管反應。
大腦皮層對血管運動的調節 在人和動物清醒狀態用容積描記法記錄肢體血管運動可以揭示大腦皮層的有力控製作用,齊托維奇於1918年最先用笛聲與皮膚冷刺激結合建成了血管收縮條件反射,單用笛聲引起了與冷刺激同樣的縮血管反應。以後A.A.羅戈夫在人,A.T.普紹尼克在狗身上分別建立了血管收縮和舒張的條件反射,發現鞏固的血管條件反射的反射量不但不小於有關的非條件反射量,反而常大於後者,甚至在人手臂容積描記實驗中,當血管條件反射與強刺激引起的非條件反射性質相反時可以壓倒非條件反射;如63℃的皮膚痛刺激引起明顯的縮血管反應,光與43℃的皮膚熱刺激結合形成鞏固的血管舒張條件反射後,條件刺激光與63℃皮膚痛刺激相遇時出現的反應是明顯的血管舒張, 63℃皮膚痛刺激的縮血管反應可以完全消失。
在非常鞏固的血管條件反射基礎上可以建立二級、三級乃至更高級的血管舒張條件反射。可以出現第一信號系統(現實的刺激)向第二信號系統(抽象的語詞)的選擇性泛化;如與現實的條件刺激有關的語詞可以引起相應的陽性血管條件反射和明顯的分化相,甚至還伴有相應的皮溫感覺。美國學者臘什麥耶等在清醒狗的平台踏車電刺激實驗中看到在接通電路前就出現了與刺激時引起狗運動的同樣的心血管反應,如心電圖的變化等,從電生理學角度證實狗同樣有條件反射性心血管反應。
血管運動的體液調節
動物體內有些組織器官釋放到血液中的化學物質對血管系統的功能狀態有調節作用。其中有些是在神經控制下與血管反射協同,成為整個循環系統調節的一個環節而起作用。另外有些體液因素不受神經的控制,是局部血流調節的重要因素。歸納起來可分為三類物質:①由內分泌腺分泌的激素,如腎上腺素和去甲腎上腺素;②組織在某些特殊活動時釋放的一些能影響血管運動的化學物質,如緩激肽、腎素、五羥色胺、組織胺等;③組織的一般代謝產物,如二氧化碳、乳酸、腺苷三磷酸的分解產物腺嘌呤酸等。第一類受神經控制。第二、三類與神經關系較少或沒有關系(表3)。
腎上腺素和去甲腎上腺素 二者都由腎上腺髓質分泌,作用與交感神經興奮時相似。兩種激素都能提高心臟的代謝率;使心搏加速,加強,心輸出量繼而增加。腎上腺素對心臟的作用較強。去甲腎上腺素對血管的作用較強。兩種激素對心臟和血管的綜合作用是使心搏率、心輸出量和體循環血壓都增加。
乙醯膽鹼 能使小血管舒張增加局部組織的血流量。由於容易被膽鹼酯酶破壞,所以在正常情況下,血中不可能有大量乙醯膽鹼出現。注射少量乙醯膽鹼有短暫的降壓作用。其生理意義在於它是膽鹼能舒血管纖維的遞質,迷走神經和其他膽鹼能舒血管纖維興奮時,釋放乙醯膽鹼引起局部血管的舒張和心搏抑制。
垂體加壓素 腦下垂體後葉分泌的加壓素引起小血管收縮,包括冠狀血管。作用時間較長,垂體後葉的內分泌功能受神經控制。刺激神經中樞端使分泌增多,痛刺激引起的加壓反射中垂體後葉加壓素的分泌也起—定作用。
腎素和血管緊張素 部分阻斷腎動脈使腎血供應不足,會使動物產生腎性高血壓,產生的原因是因腎供血不足時血鈉降低刺激腎小球旁細胞釋放一種叫做腎素的酶(血管緊張肽原酶),此酶入血後,能將血漿中血管緊張素原(在α2球蛋白中)水解為一種十肽,叫做血管緊張素Ⅰ。當它經過肺循環時,被其中的轉換酶脫去兩個氨基酸,成為血管緊張素Ⅱ。在氨基肽酶作用下血管緊張素Ⅱ水解成一種七肽——血管緊張素Ⅲ。血管緊張素Ⅱ、Ⅲ都有很高的生物活性,特別是血管緊張素Ⅱ是已發現的最強的縮血管物,血管緊張素Ⅲ主要是刺激腎上腺皮質分泌醛固酮,從而加強腎小管對於鈉及水的重吸收,Ⅱ和Ⅲ都有增加血壓的效應。
局部性體液調節因素 多是組織的代謝產物如二氧化碳、乳酸、氫離子、鉀離子和腺苷三磷酸的分解產物如腺嘌呤酸等,一般都有局部舒血管作用,有助於增加活動器官的血液供應。組織胺是組氨酸的脫羧產物,許多組織,特別是皮膚、肺和腸粘膜的肥大細胞含量較多,在組織發炎、受傷和過敏反應時放出,使平滑肌收縮,但使毛細血管強烈舒張以至造成損傷,導致小血管通透性增加,血漿大量滲出,從而減少循環血量,降低動脈血壓,這些反應都對循環有破壞作用。消化道、腦組織、血小板等有色氨酸的衍生物叫五羥色胺(5-HT),一般有縮血管作用,但小量則使肌肉血管舒張。前列腺素廣泛存在於各種組織中,在生理和病理情況下都能釋放,先到組織間液,後到循環血液,它的成分復雜,有些成分有局部縮血管的作用,但前列腺素主要成分引起血管舒張。
5. 所有的動物都有心臟嗎
不是所有的動物都有心臟。
比如:腔腸動物(常見的水母等)、軟體動物(常見的額烏賊等)等動物都是沒有心臟的動物。
腔腸動物主要有體壁、外骨骼、消化系統、神經系統和呼吸系統等組成,是沒有心臟的。
軟體動物主要有頭部和足部,其內部也沒有「心臟」這種器官。
(5)哪些動物的心臟中有骨骼擴展閱讀:
腔腸動物的主要特徵:
1、身體呈輻射對稱,有的為兩輻射對稱;
2、兩胚層和原始消化腔;
3、細胞出現原始的組織分化;
4、網狀神經系統(擴散或散漫神經系統)。
6. 生物種類有哪些
動物分類有這些
在動物界中,根據動物身體中有沒有脊椎而分成為脊椎動物和無脊椎動物兩大主要門類。脊椎動物按照從低等到高等分為魚類、兩棲類、爬行類、鳥類、哺乳類。無脊椎動物分為原生動物、腔腸動物、
環節動物、軟體動物、節肢動物。
在動物分類學上,為了將數量眾多的物種進行鑒定、研究,便建立了一個科學的系統,設立了很多的等級,用以表示各種動物間類似的程度和親緣關系的遠近。物種是動物分類的基本單位,將若干相近似的物種歸並在一起,稱為屬,又將一些相近似的屬歸並在一起,稱為科,再將若干科並為目,若干目並為綱,若干綱並為門,門是動物界最高的分類等級,這樣從上至下則為界、門、綱、目、科、屬、種,形成了一個科學的動物分類系統。有時為了更精確地表達動物間的分類地位和相似的程度,或因各等級間范圍過大,不能完全包括其特徵關系或系統關系,有的學者將原有的等級再進一步細分,如在某一等級之前加上「總」或在某一等級之後加上「亞」這一級。即為門、亞門、總綱、綱、亞綱、總目、目、亞目、總科、科、亞科、屬、亞屬、種、亞種等。
「門」是分類的最大單元。目前動物界一共分為30多門,其中主要的有下列幾門:原生動物門、多孔動物門、腔腸動物門、扁形動物門、線蟲動物門、環節動物門、軟體動物門、節肢動物門、棘皮動物門、脊索動物門。動物類群之間相似程度越大,表明它們的親緣關系越近;相似程度越小,表明它們的親緣關系越遠。動物分類體系就是力圖表明各類動物在進化歷程中這種相互之間的自然關系。
植物分類有哪些
植物按照從低等到高等的順序可以分為藻類、苔蘚類、蕨類和種子植物。種子植物按照果實有無種皮包被分為裸子植物和被子植物。被子植物按照子葉的數目分為單子葉和雙子葉植物。同樣,把植物界各個分類等級按照其高低和從屬親緣關系順序地排列起來,即將整個植物界的各種類別按其大同之點歸為若干門,各門中就其不同點分別設若干綱,在綱下分目,目下分科,科再分屬,屬下分種。植物界共分17個門,即裸藻門、金藻門、甲藻門、綠藻門、輪藻門、褐藻門、紅藻門、藍藻門、地衣門、細菌門、真菌門、粘菌門、卵菌門、苔蘚植物門、蕨類植物門、裸子植物門、被子植物門。
地球上生物種類及分布總況
地球上的生物種類繁多,形態各異。根據生物學家統計,生物圈中已被記錄在冊的生物有250萬種,其中動物約200萬種,植物約34萬種,微生物約3.7萬種。因受地理位置、氣候、地形以及土壤等因素的影響,地球上生物的分布也是多種多樣的。首先可以將地球生物分為水生生物和陸生生物,其中陸生生物又可以根據緯度地帶性、經度地帶性和垂直地帶性而分為熱帶雨林、常綠闊葉林、落葉闊葉林和北方針葉林、稀樹草原、草原、荒漠以及苔原。
7. 動物有哪些器官
1、軟骨
軟骨內的基質呈凝膠狀態,具有較大韌性。軟骨是以支持作用為主的結締組織。軟骨內不含血管和淋巴管,營養物由軟骨膜內的血管中滲透到細胞間質中,再營養骨細胞。
2、骨骼肌
骨骼肌(skeletal muscle)又稱橫紋肌,附著在骨骼上的肌肉,肌肉中的一種。
3、心臟
心臟是脊椎動物身體中最重要的器官之一,主要功能是為血液流動提供動力,把血液運行至身體各個部分。人類的心臟位於胸腔中部偏左下方,體積約相當於一個拳頭大小,重量約250克。女性的心臟通常要比男性的體積小且重量輕。人的心臟外形像桃子,位於橫膈之上,兩肺間而偏左。
4、血管
血管是指血液流過的一系列管道。除角膜、毛發、指(趾)甲、牙質及上皮等地方外,血管遍布人體全身。血管按構造功能不同,分為動脈、靜脈和毛細血管三種。
5、腎
腎是脊椎動物的一種器官,屬於泌尿系統的一部分,負責過濾血液中的雜質、維持體液和電解質的平衡,最後產生尿液經尿道排出體外;同時也具備內分泌的功能以調節血壓。
8. 海洋動物的種類劃分主要有哪些
按生活方式劃分海洋動物主要有海洋浮游動物、海洋游泳動物和海洋底棲動物三個生態類型。
按分類系統劃分海洋動物共有幾十個門類,可分為海洋無脊椎動物和海洋脊椎動物兩大類,或分為海洋無脊椎動物、海洋原索動物和海洋脊椎動物三大類。
海洋無脊椎動物海洋無脊椎動物是背側沒有脊柱的動物,其種類數占動物總種類數的95%。無脊椎動物是動物的原始形式,是動物界中除原生動物界和脊椎動物亞門以外全部門類的通稱。BBC主持人大衛·阿登堡爵士(Sir David Attenborough)所言:「如果一夜之間所有的脊椎動物從地球上消失了,世界仍會安然無恙,但如果消失的是無脊椎動物,整個陸地生態系統就會崩潰。」一切無脊柱的動物占現存動物的90%以上。它分布於世界各地,在體形上,小至原生動物,大至龐然巨物的魷魚。無脊椎動物一般身體柔軟,無堅硬的能附著肌肉的內骨骼,但常有堅硬的外骨骼(如大部分軟體動物、甲殼動物及昆蟲),用以附著肌肉及保護身體。除了沒有脊椎這一點外,無脊椎動物內部並沒有多少共同之處。無脊椎動物這個分類學名詞以前用於與脊椎動物(該詞至今仍為一個亞門的名稱)相對,但在現代分類法上已經不用。
分類情況 分類依據(1)無脊椎動物的神經系統呈索狀,位於消化管的腹面;而脊椎動物為管狀,位於消化管的背面。
(2)無脊椎動物的心臟位於消化管的背面;脊椎動物的位於消化管的腹面。
(3)無脊椎動物無骨骼或僅有外骨骼,無真正的內骨骼和脊椎骨;脊椎動物有內骨骼和脊椎骨。
1822年J.B.de拉馬克將動物界分為脊椎動物和無脊椎動物兩大類。1877年德國學者E.海克爾將柱頭蟲、海鞘和文昌魚等動物與脊椎動物合稱脊索動物門,與無脊椎動物的各門並列,使脊椎動物在分類系統中降為脊索動物門中的一個亞門,與半索動物亞門(柱頭蟲)、尾索動物亞門(海鞘)和頭索動物亞門(文昌魚)並列。70年代以來半索動物已獨立成門,由於後3個類群屬於無脊椎動物范疇,這樣,無脊椎動物實際上包括了除脊椎動物亞門以外所有的動物門類,是動物學中的一個一般名稱,而不是正式的分類階元。
(2)種類劃分無脊椎動物的種類非常龐雜,現存約100餘萬種(脊椎動物約5萬種),已絕滅的種則更多。它包括的門數因動物學的發展而不斷增加。由於對動物的各個方面研究得愈加詳盡,人們對其彼此間親緣關系的認識也愈加深入,因而各門的分類地位常有改動。
無脊椎動物中的門一般把動物界分為十門。
包括:原生動物門、多孔動物門、腔腸動物門、扁形動物門、線形動物門、環節動物門、軟體動物門、節肢動物門和棘皮動物門。
脊索動物門有:尾索,頭索,脊索和脊椎動物四個亞門。除脊椎動物亞門外,其它的便都是無脊椎動物。
形態特徵無脊椎動物多數體小,但軟體動物門頭足綱大王烏賊屬的動物體長可達18米,腕長11米,體重約2噸。無脊椎動物多數水生,大部分海產,如有孔蟲、放射蟲、缽水母、珊瑚蟲、烏賊及棘皮動物等,部分種類生活於淡水,如水螅、一些螺類、蚌類及淡水蝦蟹等。蝸牛、鼠婦等則生活於潮濕的陸地。而蜘蛛、多足類和昆蟲則絕大多數是陸生動物。無脊椎動物大多自由生活。在水生的種類中,體小的營浮游生活;身體具外殼的或在水底爬行(如蝦、蟹),或埋棲於水底泥沙中(如沙蠶蛤類),或固著在水中外物上(如藤壺、牡蠣等)。無脊椎動物也有不少寄生的種類,它們寄生於其他動物和植物體表或體內(如寄生原蟲、吸蟲、絛蟲和棘頭蟲等)。有些種類如蚓蛔蟲和豬蛔蟲等會給人類帶來危害。
運動系統運動系統包括身體支撐和前進兩部分。
(1)骨骼無脊椎動物沒有脊椎動物那一根背側起支撐作用的脊柱和狹義的骨骼。廣義的骨骼包括外骨骼(保護作用,不使水分蒸發),內骨骼和水骨骼三種。而無脊椎動物擁有的正是這三種骨骼。
外骨骼指的是甲殼等堅硬組織,如蝸牛的殼,螃蟹的外殼和昆蟲的角質層都屬於外骨骼。
內骨骼存在於脊椎動物,半脊椎動物,棘皮動物和多孔動物中,在內起支撐作用。多孔動物的內骨骼並不是中胚層起源的。棘皮動物的內骨骼是由CaCO3和蛋白質組成的,這些化學物品體按同一方向排列。
水骨骼是動物體內受微壓的液體(無體腔動物的扁形動物也不例外)和與之拈拮的肌肉,加上表皮及其附屬的角質層的總稱。水骨骼是無脊椎動物的主要骨骼形式。除了上述的軟體動物,棘皮動物和節肢動物外的其他無脊椎動物都擁有水骨骼。
(2)運動無脊椎動物的運動方式有多種:
①藉助纖毛的擺動前進。
②沒有剛毛,沒有環形肌的線形動物通過兩側縱肌的交替收縮實現的蛇行。
③有剛毛有環形肌有縱肌的蚯蚓的蠕動。這是通過不同節段縱,環肌肉交替收縮實現的。
④在海底沉積物中,通過膨脹身體某節段實現固定,身體的另外部分收細前鑽。
⑤有爪動物的爬行。
⑥昆蟲的飛行(只是少數)。
排泄系統並不是所有的無脊椎動物都有排泄器官的。例如扁形動物,它們靠的是位於下表皮向內伸出的表皮突起的排泄細胞完成排泄的。而無脊椎動物常見的排泄器官則是原腎管和後腎管。
神經系統尤脊椎動物的神經系統沒有脊椎動物的那麼復雜多樣。從最原始的神經細胞,到神經細胞集合成為神經節,到後來大腦的形成,其形式由彌散的神經網到有序的神經鏈,到中樞和梯狀神經系統的出現,也經歷了一個由簡單到復雜的過程。
感覺器官由刺胞動物的感覺棍(有視覺和重力覺),經過扁形動物頭部神經細胞群集形成的「眼」,到昆蟲的復眼和頭足動物,例如烏賊的眼(是由外胚層形成的),解析度不斷上升。這更有利於動物逃避敵害和捕食。
消化系統刺胞動物是桶形的,口和肛門是同一個開口。其消化系統被稱為胃管系統,它和扁形動物分支的腸一樣,行使消化和運輸功能,因為刺胞動物沒有循環系統。
內寄生的線形動物已經退化,它們靠頭節吸取宿主小腸內的營養。
而大部分的真後生動物都有貫穿身體全長的消化管道以及與之配合的消化腺和循環系統,行細胞外消化。消化管道通常由口、咽、食道(有如蚯蚓者,它還有膨大的嗉囊)、(肌肉)胃、腸和肛門構成。而雙殼綱動物甚至用鰓過濾食物。
循環系統無脊椎動物不一定有循環系統,例如上述的刺胞動物、扁形動物、緩步動物和線形動物。而有循環系統的動物,又有如軟體動物的開放式循環系統(頭足動物的循環系統有向閉合式發展的趨向)和環節動物的閉合循環系統。在昆蟲和蜘蛛等動物身體里有的是血淋巴。
循環系統的任務是運輸。它將呼吸系統里的氧氣和消化系統的營養物質運輸到身體的其他地方,而將代謝廢物運輸到排泄器官。
呼吸系統無脊椎動物和其他生物一樣,需要氧化能源物質以獲得能量,這個過程需要呼吸系統提供氧氣。無脊椎動物最常見的呼吸器官是鰓。但昆蟲的呼吸器官卻是氣管,它們開口於體表的可關閉的氣門,往體內不斷細分,不經過循環系統直接將氧氣運輸到細胞的線粒體旁邊,是非常有效的一套呼吸系統。
生殖情況 無脊椎動物的繁殖形式多樣。首先分為有性跟無性兩種。有些動物,如刺胞動物和寄生蟲線形動物,有世代交替現象。如果動物是雌雄同體,還會出現自體交配現象。
無性生殖常見的形式是出芽生殖,見於刺胞動物的無性世代。
有性生殖的特點是,生殖通過生殖細胞的結合完成。生殖過程可以是由一者單獨完成,但更常見是兩個個體通過各自提供不同的交配類型的生殖細胞去共同完成。前者見於豬肉絛蟲,它後部性成熟的體節會受精於後一節體節。蚯蚓也會偶爾出現自身交配現象。
世代交替,以缽水母為例,水母會通過精卵融合的有性生殖方式生育出水螅。水螅然後經過無性生殖,即旁支出芽分裂,經過疊生體和蝶狀幼體階段再次成為水母。
發展歷史地球上無脊椎動物的出現至少早於脊椎動物1億年。大多數無脊椎動物化石見於古生代寒武紀,當時已有節肢動物的三葉蟲及腕足動物。隨後發展出古頭足類及古棘皮動物的種類。到古生代末期,古老類型的生物大規模絕滅。中生代還存在軟體動物的古老類型(如菊石),到末期即逐漸絕滅,軟體動物現代屬、種大量出現。到新生代演化成現代類型眾多的無脊椎動物,而在古生代盛極一時的腕足動物至今只殘存少數代表(如海豆芽)。
因為無脊椎動物體內沒有調溫乏統,隨外界溫度的變化,其代謝速度也發生變化。直到高等的軟骨魚類,如鯊魚出現調溫機制,為溫血動物。真正意義上的恆溫動物應該從鳥類開始。
海洋原索動物原索動物是原索動物亞門(如海鞘、樽海鞘)和頭索動物亞門(如文昌魚)動物的統稱。原索動物與脊索動物的另一個亞門(脊椎動物亞門)相似,有一中空的背神經索、鰓裂以及脊索(一條質硬的支持身體縱軸的棒狀結構,脊柱的前身)。原索動物與脊椎動物的主要區別是沒有脊柱骨。現生的原索動物與脊椎動物由同一祖先演化而來。關於脊椎動物如何演化,普遍接受的理論主要有兩種。一種理論推測其祖先衍演生活,可以像羽鰓類,但幼體不特化,適於在大洋中浮游而達到性成熟,由此演化出的類型喪失隨後的固著階段,脊椎動物即由這一自由游泳的動物演化而來。另一種相近的理論出現較晚,是假設脊索動物由一小類化石種類無脊椎屬演化而來。
脊索動物是動物界最高等的一門。其成體或幼體背側有一脊索,故名。分口索動物、尾索動物、頭索動物和脊椎動物等四亞門。其中前三個亞門合稱「原索動物」。
原索動物是脊索動物門原始的一群。其幼體或成體保留著脊索。脊索具有彈性,能彎曲,不分節,是構成骨胳的最原始中軸。原索動物種類少,全部海生,分為口索動物、尾索動物和頭索動物三亞門。
口索動物也稱「半索動物」,是脊索動物門的一亞門。口索動物體呈蠕蟲狀,左右對稱,僅接近口部有脊索的形跡。其身體前端吻部有起源於體腔的水腔。例如柱頭蟲和玉鉤蟲。
柱頭蟲殖翼柱頭蟲科。柱頭蟲身體,呈長柱形,分吻、領和軀干三部分,長達40厘米。全身黃色,極柔軟,容易切斷。柱頭蟲定居海灘泥沙中,穴外堆土,常有碘臭,產於我國青島一帶。
玉鉤蟲也稱「黃島長吻柱頭蟲」屬於玉鉤蟲科。玉鉤蟲與柱頭蟲相似,但體較短,吻較長。它產於我國青島一帶海中,是國家二級保護動物。
尾索動物也稱「被囊動物」,是脊索動物門的一亞門。尾索動物有少數自由生活的,終生具有脊索的尾部,如海樽、紐鰓樽等;也有固著生活的,僅幼體具有脊索的尾部,成體尾部退化消失,如海鞘等。
海樽屬海樽科。海樽體小呈桶狀,被囊透明,可通過被囊看到內部構造。海樽的生殖形式有有性生殖或出芽生殖。它多為單體,在海面營漂浮生活。
海鞘的排泄孔在口的附近。海鞘呈單體或由無性出芽而成群體。海鞘有性生殖的幼體形似蝌蚪,游泳時期極短,固著外物後尾部退化,遂成固著生活的成體。
頭索動物也稱「無頭動物」,是脊索動物門的一亞門。頭索動物體呈魚形,頭部分化不明顯,終生具有脊索。其咽部的壁貫穿許多鰓裂,由同鰓腔孔與外界相通。它種類少,代表動物是文昌魚。
文昌魚別稱「蛞蝓魚」,是文昌魚科。文昌魚形似小魚側扁,兩端尖。它頭端有眼點,下為前庭及口,前庭外緣有須多條。文昌魚有背鰭、尾鰭和臀鰭,身體腹面有一對皮褶。它棲息海底,通常鑽在泥沙里,僅露出頭端。以浮游生物為食。分布於我國廈門、青島和煙台沿海,以廈門為最多。文昌魚是無脊椎動物進化至脊椎動物的過渡類型,在學術上有重要意義。它可供生物學教學和研究用,也供食用。
海洋脊椎動物海洋脊椎動物包括有海洋魚類、爬行類、鳥類和哺乳類。其中,海洋魚類有圓口綱、軟骨魚綱和硬骨魚綱。海洋爬行動物有棱皮龜科,如棱皮龜;海龜科,如螭龜和玳瑁;海蛇科,如青環海蛇和青灰海蛇等。海洋鳥類的種類不多,僅佔世界鳥類種數的0.02%,如信天翁、鸌、海燕、鰹鳥、軍艦鳥和海雀等都是人們熟知的典型海洋鳥類。分布於中同的海洋鳥類約有20多種,它們一部分為留鳥,大部分為候鳥。中國常見的海洋鳥類有:鸌形目的白額鸌和黑叉尾海燕等,鵜形目的褐鰹鳥和紅腳鰹鳥,雨燕目的金絲燕和短嘴金絲燕等。海洋哺乳動物包括鯨目、鰭腳目和海牛目等。
海洋脊椎動物中的門脊椎動物是指有脊椎骨的動物,是脊索動物的一個亞門。這一類動物一般體形左右對稱,全身分為頭、軀干、尾三個部分,軀干又被橫膈膜分成胸部和腹部,有比較完善的感覺器官、運動器官和高度分化的神經系統。脊椎動物包括魚類、兩柄動物、爬行動物、鳥類和哺乳動物等五大類。
脊椎動物數量最多,結構最復雜,進化地位最高,由軟體動物進化而來。它們形態結構彼此懸殊,生活方式千差萬別。脊椎動物除具脊索動物的共同特徵外,其他特徵還有:①出現明顯的頭部,中樞神經系統成管狀,前端擴大為腦,其後方分化出脊髓。②大多數種類的脊索只見於發育早期(圓口綱、軟骨魚綱和硬骨魚綱例外),以後即為由單個的脊椎骨連接而成的脊柱所代替。③原生水生動物用鰓呼吸,次生水生動物和陸棲動物只在胚胎期出現鰓裂,成體則用肺呼吸。④除圓口綱外,都具備上、下頜。⑤循環系統較完善,出現能收縮的心臟,促進血液循環,有利於提高生理機能。⑥用構造復雜的腎臟代替簡單的腎管,提高排泄機能,由新陳代謝產生的大量廢物能更有效地排出體外。⑦除圓口綱外,水生動物具偶鰭,陸生動物具成對的附肢。脊椎動物亞門包括:圓口綱、軟骨魚綱、硬骨魚綱、兩柄綱、爬行綱、鳥綱和哺乳綱。各綱的特徵雖然有顯著差別,但組成軀體的器官系統及其功能基本一致。
盾皮類盾皮類是戴盔披甲的魚類,它們是甲胄,和化石無頜類不同,是由覆蓋頭部的頭甲和包裹軀乾的軀甲兩個單元組成,東生清鱗魚就是很好的例子。盾皮類是一支古老的有頜脊椎動物,和其它魚類及高等脊椎動物一樣,最前面的鰓弓發展成攝取食物的頜,頜上裝備了牙齒。頜的出現是脊椎動物進化中的一次重大革命,無頜類只能被動地過濾水中的細小有機體,而有頜類可用頜主動攝取食物。盾皮類是一個種類紛繁的家族,泥盆紀為其全盛時期,但隨著泥盆紀的結束而趨於消亡。雲南魚、武定魚和般溪魚,是部分不同種類的盾皮類。
魚類魚類中獲得最大成功的要屬硬骨魚和軟骨魚類,二者在泥盆紀時雖在種類和數量上還遠不能與無頜類的盾皮類匹比,在隨後的時間里它們日益繁盛,現生的魚類都屬於這兩類。
硬骨魚類的一支,稱為肉鰭類,包括終鰭類的肺魚。因為終鰭類的鰭具有發達的肉質柄,棲內的骨骼和高等脊椎動物的四肢骨相似,所以科學家們相信它們中的一支是四足脊椎動物的祖先,在泥盆紀晚期發展出兩棲類,因此早期終鰭魚類特別受到古生物學家的青睞。發現於中國雲南早泥盆世的著名的揚氏先驅魚乃是當前所知最早的終鰭類代表。肉鰭類在中晚泥盆世甚是繁盛,以後逐漸衰落,現在殘存的僅有南美洲肺魚、澳洲肺魚和極為罕見的終鰭類拉蒂曼魚。
另一支硬骨魚類在古生代時身體都覆蓋厚重的菱形鱗片,因為鱗片表面敷以發亮的名為硬質的物質,所以它們被稱為硬鱗魚類。像吐魯番鱈、長興魚、重慶魚和中華弓鰭魚都是這類的代表。至中生代後期,硬鱗魚類日趨衰落,現在還生存的硬鱗魚極為稀少,生活在中國長江的中華鱘堪你硬鱗魚類中的活化石,被列為同家一級保護動物。
在生存競爭、優勝劣汰的自然規律下,到中生代後期硬鱗魚逐漸被它們的後裔真骨魚取代。真骨魚類的鱗片由於硬質退化只保留骨質基屑,因此薄而富有韌性,既不失女鱗片保護作用,又擺脫了硬鱗的沉重負擔,增加了靈活性。所以從中生代後期至今,真骨魚類在進化中不斷完善自己,長盛不衰,由海洋到江湖河流無處不在,成為世界上最寵大的脊椎動物。狼鰭魚和昆都倫魚都是原始的真骨魚類代表。
軟骨魚類除了覆蓋身體的細小盾鱗,所有骨骼都是由軟骨組成,從不骨化,現海洋中的各種鯊魚和銀鮫就是這類魚的代表。軟骨魚類從泥盆紀出現至今,在數量上一直沒有大起大落,只有少數種類在古生代後期至中生代早期曾入侵到淡水中,大多數軟骨魚類局限於海洋。軟骨魚類之所以能夠一直延續下來,是得益於它們內受精和富含蛋黃的卵,這是繁衍後代的有力保證。因為軟骨魚類骨骼為軟骨性,在化石中不易保存,所以常見的化石是牙齒和鱗片。中華旋齒鯊化石,乃是其齒旋的一部份,這類牙齒在西藏珠峰也有發現。
海洋脊椎動物起源脊椎動物起源可能分五步。
高階元生物類別的起源歷來是進化生命科學的核心命題。包括人類在內的脊椎動物譜系總根底起源涉及到脊椎動物兩大類群間的演化關系,因而不僅是學術界長期探索的一個焦點問題,也是大眾普遍關注的一個科學熱點。現代動物學從各個不同層次進行探索,近年來取得了較為廣泛認同的脊椎動物起源分「四步走」的假說。該假說認為,在動物演化大樹的兩大基本分支潛系中,位於後口動物譜系頂端的脊椎動物與原口動物譜系沒有直接聯系。脊椎動物根植於後口動物脊椎系的演化輪廓是:從現在最低等的後口動物棘皮動物和半索動物為始點,先後經由僅在尾部具有脊索的尾索動物和脊索縱貫全身的頭索動物,最後通過脊椎和頭部構造的出現,誕生出該譜系的終端產物脊椎動物。然而學術界的共識是,這一基於現代動物學信息間接推測出來的假說到底是否可靠,還必須得到真實歷史資料的檢驗、修正和補充。
要在古生物學上進行有效的脊椎動物起源研究,應該以現代動物學信息為重要線索,在盡可能靠近脊椎動物起源的「源頭」時段探尋時做好兩件工作——首先是力求發現最古老、最原始的脊椎動物;接著便是以這些脊椎動物始祖為起點,向前逐步追溯它們在無脊椎後口動物中的完善的祖先序列。我國保存了五億三千萬年前的眾多精美後口動物軟軀體構造化石的澄江化石庫,恰好靠近這樣的「源頭」,為中國學者揭開這一謎團提供了一個難得的機遇。
年昆明魚和海口魚的發現被英國《自然》雜志評論為「逮住第一魚」,為難題的破解投進了一縷曙光。2003年初,舒德乾等人再度在《自然》雜志著文,他們通過對數百枚海口魚標本的深入研究,揭示出它們一方面已經開始演化出原始脊椎骨和眼睛等重要頭部感官,另一方面卻仍保留著無頭類的原始性器官,從而證實了它們不僅是已知最古老的脊椎動物,而且還屬於地球上一類最原始的脊椎動物。早期後口動物的系列性發現,不僅與現代動物學關於脊椎動物起源分「四步走」假說相一致,更重要的是添加了比這「四步走」更為原始的「第一步」,從而首次提出了脊椎動物起源至少分「五步走」的新假說。這些始見於澄江化石庫地層最底部的「第一步」動物群古蟲類和雲南蟲類,是一些創生出咽腔型鰓系統的原始分節後口動物,極可能代表著學術界期盼已久的原口動物和後口動物分節的共同祖先與由於軀體特化而喪失分節性的後口動物(包括棘皮動物和半索動物)之間的過渡類型。十分有趣的是,盡管它們由於咽鰓的出現而引發了動物體在取食、呼吸等新陳代謝方式的重大革新而成為真正的後口動物,但其軀體卻仍保留著其祖先的分節性特徵。舒德干解釋說:「實際上,既出現創新特徵又繼承祖先某些原始性狀的鑲嵌演化是生物界一種十分常見的現象。」在這分「五步走」的演化系列中,「第一步」的動物類群十分奇特。對1400多枚海口蟲標本進行比較解剖學研究表明,它們不僅缺少脊索構造,而且在皮膚、肌肉、呼吸、循環和神經等器官系統上與脊索動物存在著根本區別;其中最為獨特的是其由6對外鰓組成的呼吸系統,這與較為高等的後口動物的內鰓迥然有別。海口蟲與同處「第一步」的古蟲動物門在軀體構型上卻相當一致——兩者皆明顯分節,而且軀體也都呈獨特的「雙重二分型」,即身體沿縱軸分為前體和後體兩大部分,而前體又被一個能自由擴張的「中帶」構造分為背、腹兩個單元。所不同的是,海口蟲兼具背神經索和腹神經索,這顯示出它比占蟲動物門稍略進步些,從而更靠近「第二步」中的半索動物。
舒德干指出,盡管我們提出了脊椎動物起源分「五步走」的新假說,但這仍只給出了一個演化輪廓,在其相鄰演化步驟之間仍缺乏中間環節的證據。
海洋脊椎動物大家族——魚綱板鰓亞綱:鰓裂5對,鰓間隔寬大,板狀,如各種鯊、鰩。
全頭亞綱:頭大而側扁,鰓裂4對,上頜骨與腦顱癒合,故稱全頭類,如我國產的黑線銀鮫。
硬骨魚系:骨骼一般為硬骨,體被骨鱗,少數種類為硬鱗或無鱗。口位於頭部前端,有骨質鰓蓋,腸內常無螺旋瓣,多數有鰾。一般體外受精,卵生。海淡水均產。常分三個亞綱:
肺魚亞綱具有內鼻孔,除用鰓呼吸外,還能以鰾代替肺呼吸。現存的種類全世界僅三屬,如分布在南美洲、非洲和澳洲的肺魚。
總鰭亞綱的偶鰭為帶鱗的肉葉,內部骨骼的排列與陸生脊椎動物肢骨的排列極為近似,是動物界「活化石」之一,如矛尾魚。
輻鰭亞綱占現代魚類的90%以上,它的骨骼系統幾乎全由硬骨組成,鰭條呈輻射狀,無內鼻孔,體被圓鱗或櫛鱗。現將我國重要經濟魚類及名貴珍稀魚類所屬的目,簡介如下:
鯡形目:頭骨骨化不完全,尚保留軟骨,背鰭無硬棘,鰭條柔軟分節,所以也稱軟鰭類;因所有的椎骨構造都相同,故又稱等椎類。鯡形日鰾管發達,體被圓鱗,如鰣魚、鯡魚、鱭、大銀魚和大麻哈魚等,均為名貴魚類。
鰻鱺目:體呈棍棒形,體前部圓而後部側扁,一般無腹鰭,背、臀和尾三鰭完全相連。鱗小或無,如鰻鱺。鰻鱺為降河洄遊性魚類,在淡水中生長,入海產卵,是一種食用價值較高的經濟魚類,在我國和日本成為養殖對象。
鱸形目:為魚綱中最大的一個目,絕大多數生活在海水中,通常有兩個背鰭,多數被櫛鱗,無鰾管。我國海產食用魚類多屬本目,如大黃(花)魚、小黃(花)魚、帶魚,連同軟體動物中的烏賊合稱「四大海產」。其他還有鱸魚、鱖魚(淡水產)、鮐魚、銀鯧以及引入的尼羅羅非魚等。
此外,常見的經濟魚類還有:鱧形目的烏鱧、合鰓目的黃鱔、鰈形目的牙鮃和魨形目的蟲紋東方魨等。
9. 螞蟻有骨頭和血液嗎
螞蟻有骨頭和血液嗎
螞蟻可以舉起超過自身重量幾倍的物體,按照道理來說應該是有骨骼的吧。但這也僅僅是應該,畢竟自然界中有太多我們無法想像的奇跡。那麼螞蟻到底有沒有骨骼呢?此外,螞蟻是否有血液也成了一個問題。
螞蟻是一種相對來說較為古老的昆蟲,據說在恐龍繁盛的那個年代就已經有螞蟻出現了,大約可以追溯到1億年以前。目前世界上已知的螞蟻共有9000種,屬於節肢動物門,昆蟲綱,蟻科。
其實螞蟻是否有骨頭對於螞蟻本身來說貌似並不是那麼重要,而我們只要知道螞蟻具備幾丁質的外骨骼和開管式的血液循環系統就OK了。
10. 水母身體的主要成分是水,那它有心臟嗎
水母的構造比較奇特,既沒有心臟、肺和大腦,也沒有骨骼和肌肉。水母身體的主要成分是水,含有95%的水,身體呈現透明或者半透明狀,好像果凍。其實水母是一種腔腸,動物品種很多,分布很廣,但是構造很低級,沒有智慧。
總結
水母身體中的毒性是比較厲害的,是一種神經性的毒素,可以致人死亡。很多人在潛水或者游泳的時候都會不小心觸碰到水母,然後被水母的觸手扎到,就會失去自己的生命。別被水母美麗的外表欺騙,一定要遠離水母。