㈠ 相機如何設置為14bit
14bit,每通道16834色階。記錄格式14bit不變,所有層次都在。
相機里RAW里12bit和14bit區別為:色深位數不同、動態范圍不同、可存儲數據量不同。12bit:12bit的色深位數為12位,色階更少,過渡更僵硬,拉曲線之後容易出現色彩分離。14bit:14bit的色深位數為14位,色階更多,過渡更自然,拉曲線之後也不會出現色彩分離。
理論上14bit的數據量是12bit的4倍。畫質更好。越高位數的AD轉換器,信噪比越高,動態范圍越大,能識別的最小信號越小,不過按照目前的技術水平,12位AD轉換器的信噪比和動態范圍已經遠高於CMOS本身的指標了,所以整個機器的性能主要由CMOS本身決定。
㈡ 尼康單反初始的色階,色調,飽和度,和銳度是多少
我用的是d5100,色階、色調我沒有改,飽和度調到5,銳度8,不錯的。
㈢ 數碼相機
數碼相機,是一種利用電子感測器把光學影像轉換成電子數據的照相機。與普通照相機在膠卷上靠溴化銀的化學變化來記錄圖像的原理不同,數字相機的感測器是一種光感應式的電荷耦合-{zh-cn:器件;zh-tw:組件}-(CCD)或互補金屬氧化物半導體(CMOS)。在圖像傳輸到計算機以前,通常會先儲存在數碼存儲設備中(通常是使用快閃記憶體;軟磁碟與可重復擦寫光碟(CD-RW)已很少用於數字相機設備)。
[編輯本段]【工作原理】
數碼相機是集光學、機械、電子一體化的產品。它集成了影像信息的轉換、存儲和傳輸等部件,具有數字化存取模式,與電腦交互處理和實時拍攝等特點。光線通過鏡頭或者鏡頭組進入相機,通過成像元件轉化為數字信號,數字信號通過影像運算晶元儲存在存儲設備中。數碼相機的成像元件是CCD或者COMS,該成像元件的特點是光線通過時,能根據光線的不同轉化為電子信號。數碼相機最早出現在美國,20多年前,美國曾利用它通過衛星向地面傳送照片,後來數碼攝影轉為民用並不斷拓展應用范圍。
優點:1、拍照之後可以立即看到圖片,從而提供了對不滿意的作品立刻重拍的可能性,減少了遺憾的發生。
2、只需為那些想沖洗的照片付費,其它不需要的照片可以刪除。
3、色彩還原和色彩范圍不再依賴膠卷的質量。
4、感光度也不再因膠卷而固定。光電轉換晶元能提供多種感光度選擇。
缺點:1、由於通過成像元件和影像處理晶元的轉換,成像質量相比光學相機缺乏層次感。
2、由於各個廠家的影像處理晶元技術的不同,成像照片表現的顏色與實際物體有不同的區別。
3、由於中國缺乏核心技術,後期使用維修成本較高。
[編輯本段]【發展簡史】
1.誕生
數碼相機的歷史可以追溯到上個世紀四五十年代,1951年賓·克羅司比實驗室發明了錄像機(VTR),這種新機器可以將電視轉播中的電流脈沖記錄到磁帶上。到了1956年,錄像機開始大量生產。它被視為電子成像技術產生。
二十世紀六十年代美國宇航局(NASA)在宇航員被派往月球之前,宇航局必須對月球表面進行勘測。然而工程師們發現,由探測器傳送回來的模擬信號被夾雜在宇宙里其它的射線之中,顯得十分微弱,地面上的接收器無法將信號轉變成清晰的圖像。於是工程師們不得不另想辦法。1970年是影像處理行業具有里程碑意義的一年,美國貝爾實驗室發明了CCD。當工程師使用電腦將CCD得到的圖像信息進行數字處理後,所有的干擾信息都被剔除了。後來「阿波羅」登月飛船上就安裝有使用CCD的裝置,就是數碼相機的原形。「阿波羅」號登上月球的過程中,美國宇航局接收到的數字圖像如水晶般清晰。
在這之後,數碼圖像技術發展得更快,主要歸功於冷戰期間的科技競爭。而這些技術也主要應用於軍事領域,大多數的間諜衛星都使用數碼圖像科技。
在數碼相機發展史上,不得不提起的是索尼公司。索尼公司於1981年8月在一款電視攝像機中首次採用CCD,將其用作直接將光轉化為數字信號的感測器。目前索尼每年生產的CCD占據了全球50%的市場,這正是索尼能夠在數碼相機市場上傲視群雄的一個原因,因為核心命脈掌握在自己手中。
在冷戰結束之後,軍用科技很快地轉變為了市場科技。1995年,以生產傳統相機和擁有強大膠片生產能力的柯達(Kodak)公司向市場發布了其研製成熟的民用消費型數碼相機DC40。這被很多人視為數碼相機市場成型的開端。DC40使用了內置為4MB的內存,不能使用其它移動存儲介質,其38萬像素的CCD支持生成756×504的圖像,兼容Windows 3.1和DOS。蘋果(APPLE)公司的QuickTake 100也同時在市場上推出。當時兩款相機都提供了對電腦的串口連接。
這之後,數碼相機CCD的像素不斷增加,功能不斷翻新,拍攝的圖像效果也越來越接近傳統相機。
2.發展歷程
一、九十年代的數碼相機
(一)早期產品早在20世紀60年代,就開始了「CCD晶元」的研究與開發,研製出航天事業用的數字化照相機,通過衛星系統從太空中向地面發送航天照片。1969年美國首次登月拍照,並將一架特製的500EL型哈桑勃特數字照相機長期留在了月球上。
1981年索尼公司發明了世界第一架不用感光膠片的電子靜物照相機——靜態視頻「馬維卡」照相機。這是當今數碼照相機的雛形。
1988年富士與東芝在科隆博覽會上,展出了共同開發的,使用快快閃記憶體卡的Pujixs(富士克斯)數字靜物相機「DS-1P」,在這前後,富士、東芝、奧林巴斯、柯尼卡、佳能等相繼發表了數字相機的試製品:如佳能RC-701、卡西歐VS-101、富士DS-1P、富士DS-X、東芝MC2000等。
(二)九十年代初期的產品1991年柯達試製成功世界第一台數碼相機,東芝公司發表40萬像素的MC-200數碼相機,售價170萬日元,這便是第一台市場出售的數碼相機。
1994年柯達商用數碼相機DC40正式面世。1995年2月卡西歐發表了25萬像素、6.5萬日元的低價數碼相機QV-10,引發了數碼相機市場的火爆。1995年佳能EOS·DCS3C問世,同年還推出EOS·DCS1C,開始了佳能數碼單反相機發展的歷史。1995年正式拉開了相機數字化的序幕。為迎接數碼相機的到來,柯達公司董事會於1995年作出了全面發展數碼科學的決策性決定,於1996年與尼康聯合推出DCS-460和DCS-620X型數碼相機,與佳能合作推出DCS-420數碼相機(專業級)。
1995年世界上數碼相機的像素只有41萬;到1996年幾乎翻了一倍,達到81萬像素,數碼相機的出貨量達到50萬台;1997年又提高到100萬像素,數碼相機出貨量突破100萬台。
1996年奧林巴斯和佳能公司也推出了自己的數碼相機。隨後富士、柯尼卡、美能達、尼康、理光、康太克斯、索尼、東芝、JVC、三洋等近20家公司先後參與了數碼相機的研發與生產,各自推出數碼相機。
1997年11月柯達公司發表了DC210變焦數碼相機,使用了109萬的正方像素CCD圖像感測器;富士發布了DC-300數碼相機。
1997年奧林巴斯首先推出「超百萬」像素的CA-MEDIAC-1400L型單反數字相機,引起行業巨大震動。
1997年美國PMA國際攝影器材博覽會上一個最顯著的特點是:傳統攝影器材與計算機信息處理相結合,圖像的攝入與傳輸成為了光電子行業與計算機行業共同事業,一些IT廠商開始介入數字照相。各大公司更多的推出1000美元以下的各類普及型數字照相機,最廉價的可在200美元以下,這為數字照相機進入尋常百姓家庭創造了條件。
1997年度普及型數字照相機的熱點和主流產品是CCD像素數35萬左右,最大解像力640×480像素的數字相機。而「百萬像素」(megapixel)相機才「初露頭角」,僅富士膠片公司、奧林巴斯、柯達和柯尼卡四家各推出一款新品。普及型數碼相機發展的重點,除提高解像力外,重點是開發特殊功能,就是傳統膠片相機不具備和辦不到的一些功能,顯示數碼相機的優越性,如在機身上裝備液晶監視屏作取景器和拍攝後可當場檢查拍攝效果的功能,把鏡頭做成可以旋轉一定度數的功能,結合液晶屏方便自拍的功能,安裝影像數據快速傳輸電腦的功能等。
(三)1998年富士膠片公司推出首款百萬級(150萬像素)最輕小、普及型刃NEPIX700型數碼相機;佳能與柯達公司合作開發了首款裝有LCD監視器的數碼單反相機EOSD2000型和EOSD6000型。
1998年是是低價「百萬像素」數字相機成為一個新的熱點和主流產品的一年,當年發表或出售的新機種60多種,20多個廠商:卡西歐(4種)、富士膠片(8種)、柯達(4種)、美能達(3種)、尼康(3種)、佳能(4種)、奧林巴斯(4種)、三洋(6種)、索尼(6種)、精工愛普生(4種)、發布二種的有「阿克發、惠普、柯尼卡、匪力浦、理光;發布一種的有:東芝、松下電子、日立、JVC、京瓷、萊卡、三星和中國的海鷗。其中達到和超過「百萬像素」的新產品約佔全部新機種的80%。最高達到168萬像素的佳能PowerShotPro70數碼相機,具有2.5倍光學變焦和2倍數字變焦,TTL自動調焦、自動曝光、2英寸彩色TPY液晶屏,有每秒4幀的速度最大連拍5秒功能。
1998年數碼相機在功能上,下了很大功夫,歸納起來大致有:
1.採用光學變焦鏡頭。有2倍、2.5倍、3倍、5倍和10倍,最高達14倍。此外部分相機還有數字變焦功能,有2倍或4倍。
2.具有可接外用閃光燈的功能。個別機種有內置閃光燈和可外接同步閃光燈的功能。
3.裝備有可交換「鏡頭—CCD」單元,具有擴展系統化的能力。
4.具有TTL光學取景或單反取景的功能。
5.單反式可換鏡頭功能。
6.對手動對焦、光圈優先和快門優先控制曝光等參數可自動設定的功能。
7.裝用「Digita」數字影像專用操作系統後,增加了如拍攝程序設定等新功能(柯達、美能達等系列產品裝用)。
8.具有多種拍攝方式。
9.採用USB(通用串列匯流排)介面,快速下載影像數據到電腦的功能。
10.不用個人電腦連接,可直接(或SM卡等記錄媒體)用專用列印機印數碼照片的功能。
主要特點:卡片數碼相機可以不算累贅地被隨身攜帶;而在正式場合把它們放進西服口袋裡也不會墜得外衣變形;女士們的小手包再也不難找到空間擠下它們;在其他場合把相機塞到牛仔褲口袋或者乾脆掛在脖子上也是可以接受的。雖然它們功能並不強大,但是最基本的曝光補償功能還是超薄數碼相機的標准配置,再加上區域或者點測光模式,這些小東西在有時候還是能夠完成一些攝影創作。至少你對畫面的曝光可以有基本控制,再配合色彩、清晰度、對比度等選項,很多漂亮的照片也可以來自這些被「高手」們看不上的小東西。
卡片相機和其他相機區別:優點:時尚的外觀、大屏幕液晶屏、小巧纖薄的機身,操作便捷。缺點:手動功能相對薄弱、超大的液晶顯示屏耗電量較大、鏡頭性能較差。
長焦相機
佳能長焦相機S3 IS長焦數碼相機指的是具有較大光學變焦倍數的機型,而光學變焦倍數越大,能拍攝的景物就越遠。代表機型為:美能達Z系列、松下FX系列、富士S系列、柯達DX系列等。一些鏡頭越長的數碼相機,內部的鏡片和感光器移動空間更大,所以變焦倍數也更大。
主要特點:長焦數碼相機主要特點其實和望遠鏡的原理差不多,通過鏡頭內部鏡片的移動而改變焦距。當人們拍攝遠處的景物或者是被拍攝者不希望被打擾時,長焦的好處就發揮出來了。另外焦距越長則景深越淺,和光圈越大景深越淺的效果是一樣的,淺景深的好處在於突出主體而虛化背景,相信很多FANS在拍照時都追求一種淺景深的效果,這樣使照片拍出來更加專業。一些鏡頭越長的數碼相機,內部的鏡片和感光器移動空間更大,所以變焦倍數也更大。如今數碼相機的光學變焦倍數大多在3倍-12倍之間,即可把10米以外的物體拉近至5-3米近;也有一些數碼相機擁有10倍的光學變焦效果。家用攝錄機的光學變焦倍數在10倍-22倍,能比較清楚的拍到70米外的東西。使用增倍鏡能夠增大攝錄機的光學變焦倍數。如果光學變焦倍數不夠,人們可以在鏡頭前加一增倍鏡,其計算方法是這樣的,一個2倍的增距鏡,套在一個原來有4倍光學變焦的數碼相機上,那麼這台數碼相機的光學變焦倍數由原來的1倍、2倍、3倍、4倍變為2倍、4倍、6倍和8倍,即以增距鏡的倍數和光學變焦倍數相乘所得。
變焦范圍越大越好?對於鏡頭的整體素質而言,實際上變焦范圍越大,鏡頭的質量也越差。10倍超大變焦的鏡頭最常遇到的兩個問題就是鏡頭畸變和色散。紫邊情況都比較嚴重,超大變焦的鏡頭很容易在廣角端產生桶形變形,而在長焦端產生枕形變形,雖然鏡頭變形是不可避免的,但是好的鏡頭會將變形控制在一個合理范圍內。而理論上變焦倍數越大,鏡頭也越容易產生形變。當然很多廠家也為此做了不少努力。比如通常廠家會在鏡頭里加入非球面鏡片來預防這種變形的產生。對於色散來說廠家通常使用防色散鏡片來避免,比如尼康公司的ED鏡片。隨著光學技術的進步,目前的10×變焦鏡頭實際上在光學性能上應該可以滿足人們日常拍攝的需要。
[編輯本段]【數據存儲】
目前數碼相機的影音存儲格式大致有以下幾種。
1、 AVI 檔案格式
擴展名為 .AVI 的影音格式,可說是最早普及化的規格之一。因為 AVI 格式未經過壓縮處理,所以短短數十秒的AVI 影音檔往往就需要5~8MB的存儲空間。加上,由於沒有一套完整的規范給使用 AVI 的格式的廠商做參考,單各家自己演繹出來的規格至少就有一百多種以上。盡管目前流行的影音播放軟體,例如:WINDVD, POWERDVD,甚至 AcdSee 3R-1等號稱可播放多達60%~70%以上的AVI檔。不過從目前的情況來看,MicroSoft Mediea Player 8.0才是兼容度最佳的AVI影音播放軟體。目前是最為常見的動態影像格式。
2、MOV檔案格式
MOV是目前大多數碼相機廠商最常採的動畫格式之一。主要的原因在於其精簡的壓縮技術,提供了使用者在低解析度下不錯的影音選擇,再加上播放軟體QuickTime 得到蘋果計算機的免費授權使用,自然更增添其普及率。目前QuickTime 4.12以上版本不僅能處理視訊、動畫、圖形、文字、聲音,甚至 360 度虛擬實境(VR)也不是問題。
3、Motion JPEG - AVI 檔案格式
由於 JPEG 採用的是全彩影像標准,以獨特的失真壓縮技術 DCT,將影像資料中較不重要的部份去除,有效減少檔案大小。將動畫播放能力與JPEG相結合,被稱為MJPEG 即是 Motion JPEG的縮寫。其儲存的擴展名仍沿用 AVI,以配合撥放軟體的兼容性。由於此一影像規格簡單,所佔記憶容量又小,許多不支持同步收音功能的數碼相機,例如:Nikon CoolPix 9XX系列以及一些簡單的視頻會議用之網路攝影機,都喜歡採用這樣的格式。
4、MPG - 檔案格式
隨著 VCD的越來越普及,連帶著 MPEG-1的技術也跟著被推廣起來。雖然,目前僅有極少部分的的數碼相機能夠支持此一規格的動畫錄制 (大多數以日本 SONY居多)。其結合專業CCD,鏡頭加上動畫技術的合成結果,與DV相比幾乎毫不遜色。MPEG 的全名是 Moving Picture Experts Group ,屬於 ISO / IEC 標准 (國際標准組織和國際電子技術公會)之一。MPEG-1 的標准出現在 1992 年,被設計用來支持第一代的 CD-ROM的播放規格,傳輸速度為 1.5-4-0 Mbps (每秒兆位,約相當29.97 fps ),解析度:352x240。MPEG 有三種壓縮畫格的方法,分別為 I 畫格 (Intra frame)、P 畫格 (Predicted frame) 與 B 畫格 (Bi-directional frame)增加壓縮效能。通過播放程序的解碼,MPEG-1技術使得長時間的電子影像可以做出快轉、回帶甚至選擇時間點這些動作。而以 MPG錄制的檔案,也可直接刻錄於VCD上,通過VCD PLAYER來觀看。
5、ASF - 檔案格式
MPEG-1的推出,至少為計算機世界帶來了兩大革命,一是使錄制長時間的電子動畫檔案擁有搜索的功能,另一則是全面壓制MP3音樂。由於各大唱片公司長期以來深受MP3的困擾,因此在制定新一代的影音技術時肯定是做出更嚴格、不容易被復制的音效格式來取代MP3。為此作為軟體界的龍頭老大Microsoft全力致力推進ASF格式的普及:ASF格式的特點是影像部分採用最新MPEG4壓縮方式,聲音部分則改用其自行研發WMA格式(WMA強調其壓縮比MP3還強兩倍,音質與MP3相近,加上WMA的保密條款與設計使用權得檔案不象MP3那樣容易被復制。)。
為了避開WMA音效的版權糾紛,業界出現了一種改用制式MP3的DIVX影音格式。DIVX以MPEG4壓縮影像,MP3壓縮音效,並以AVI文件的格式儲存!。但由於播放DIVX規格的影像檔案時必需下載DIVX的CODEC,加上 DIVX播放的系統資源要求相當高,至少要在 AMD K-350或是Pentium II 300以上的CPU才能順利播放。在可見的未來,除非大幅提升數字影音 IC 的處理速度,否則短時間之內不會見到配備這樣規格的數字影音錄制器材上市。
6、RM - 檔案格式
RealVideo是RealNetworks專為網路影音所開發的實時播放軟體,讓網頁製作者可以在網站上提供實時的影音節目。同樣,由RealNetworks所開發的RealAudio,則能在網站上提供聲音的實時播放。使用者可至以下的網址尋找免費下載 RealPlayer 的軟體和信息。除此之外,RM還可以支持線上Stream Line 直接播放,而無須將整個影音檔案下載。不過由於RM畫質不佳的缺點得不到有效解決,目前市面上還沒有支持 RM錄化格式的數碼相機。但目前國內的一些低端數碼相機製造商已經取得 RM的授權,正在研製這方面的技術,相信不久的將來就可以看到支持RM格式的的網路型數碼相機。
7、GIF動畫格式
GIF嚴格說來,只能算動態圖片展示格式。顏色只支持到 256色色階,無法錄音。標准規格還分為GIF87a和GIF89a兩種,只有GIF89a具有透明背景與動畫播放能力。數碼相機應用上,也只有SONY一家可以直接製作 GIF CLIP。
[ CCD
中文譯為:電子耦合組件(charged coupled device),它就像傳統相機的底片一樣,是感應光線的電路裝置,你可以將它想像成一顆顆微小的感應粒子,鋪滿在光學鏡頭後方,當光線與圖像從鏡頭透過、投射到CCD表面時,CCD就會產生電流,將感應到的內容轉換成數碼資料儲存起來。CCD像素數目越多、單一像素尺寸越大,收集到的圖像就會越清晰。因此,盡管CCD數目並不是決定圖像品質的唯一重點,仍然可以把它當成相機等級的重要判准之一。
CMOS
comple-mentary metal-oxicle-semiconctor,中文譯為:互補金屬氧化物半導體
DPOF
DPOF指的是數碼列印順序指令,用於在存儲介質(影像記憶卡等)上記錄信息。在此格式下,你可以設定將數碼相機拍攝的那些影像進行列印以及進行列印多少張。
廣角鏡
即wide angle,又叫短焦鏡頭。廣角鏡因焦距非常短,所以投射到底片上的景物就變小了擴闊鏡頭拍攝角度,除可拍攝更多景物,更能在狹窄的環境下拍攝出寬闊角度的影像。
像素數
數碼相機的像素數包括有效像素(Effective Pixels)和最大像素(Maximum Pixels)。與最大像素不同的是有效像素數是指真正參與感光成像的像素值,而最高像素的數值是感光器件的真實像素,這個數據通常包含了感光器件的非成像部分,而有效像素是在鏡頭變焦倍率下所換算出來的值。 對於手機的數碼相機像素,目前只能處於初級發展階段,像素數並不很高,大都在10萬--130萬像素之間。數碼相機的像素數越大,所拍攝的靜態圖像的解析度也越大,相應的一張圖片所佔用的空間也會增大。
。
變焦
鏡頭的另一個重點在變焦能力,所謂的變焦能力包括光學變焦(optical zoom)與數碼變焦(digital zoom)兩種。兩者雖然都有有助於望遠拍攝時放大遠方物體,但是只有光學變焦可以支持圖像主體成像後,增加更多的像素,讓主體不但變大,同時也相對更清晰。通常變焦倍數大者越適合用於望遠拍攝。光學變焦同傳統相機設計一樣,取決於鏡頭的焦距,所以解析度及畫質不會改變。數碼變焦只能將原先的圖像尺寸裁小,讓圖像在lcd屏幕上變得比較大,但並不會有助於使細節更清晰。
光學變焦
是依靠光學鏡頭結構來實現變焦,變焦方式與35mm相機差不多,就是通過攝像頭的鏡片移動來放大與縮小需要拍攝的景物,光學變焦倍數越大,能拍攝的景物就越遠。如今的數碼相機的光學變焦倍數大多在2倍-5倍之間,也有一些碼相機擁有10倍的光學變焦效果。家用攝錄機的光學變焦倍數在10倍~22倍,能比較清楚的拍到70米外的東西。使用增倍鏡能夠增大攝錄機的光學變焦倍數。
數字變焦
即digital zoom,實際上是畫面的電子放大,把原來CCD影像感應器上的一部份像素使用「插值」處理手段做放大,將CCD影像感應器上的像素用插值演算法將畫面放大到整個畫面。通過數碼變焦,拍攝的景物放大了,但它的清晰度會有一定程度的下降,有點像VCD或DVD中的zoom功能,所以數碼變焦並沒有太大的實際意義。
智能變焦
全新獨有的sony智能變焦功能.可放大變焦拍攝,不會將微粒放大,令放大的影像也能保持原有的細致質素.智能變焦因應不同影像尺寸的選擇,提供不同程度的強化變焦功能.有別於數碼變焦,智能變焦能保持畫質與原本影像相同。
程序式自動曝光
程序式自動曝光是電子技術與人工智慧相結合的產物,採用這種方式曝光時,相機不但能根據光線條件算出合適的曝光量,還能自動選擇合適的曝光組合。
超焦距
由於鏡頭的後景深比較大,人們稱對焦點以後的能清晰成像的距離為超焦距。超焦距范圍內的景物並非真正的清晰成像,由於不在對焦點上,肯定是模糊的,只是模糊的程度一般人能夠接受而已,這就是傻瓜相機拍攝的底片不能放大得太大的原因。
LCD取景
這是目前大多數數碼相機必備的取景方式。LCD取景唯一的優點正是改正普通光學取景唯一的缺點,LCD取景的缺點:首先LCD是耗電大戶,他要佔用整部相機1/3以上的電量;其次LCD取景的姿勢必須是雙手前伸,與眼睛保持一定距離,此時相機無法獲得穩定的三角支撐,用低速快門很難拍出穩定清晰的相片,最後是LCD上顯示的畫面色彩、對比度與實際在電腦中看到的實際影像誤差較大,而且即使標稱百萬像素的LCD看上去畫面仍然很粗糙,無法觀察拍攝體細節,面對這種畫面你很難對你照的照片是否符合你的要求作出判斷,所幸的是現在數碼相機幾乎同時配有普通光學取景和LCD取景,如果購買只有LCD取景器的數碼相機有一定風險,除非您有足夠把握能得到需要的效果。 LCD取景器
OLED
為了形像說明OLED構造,可以做個簡單的比喻:每個OLED單元就好比一塊漢堡包,發光材料就是夾在中間的蔬菜。每個OLED的顯示單元都能受控制地產生三種不同顏色的光。OLED與LCD一樣,也有主動式和被動式之分。被動方式下由行列地址選中的單元被點亮。主動方式下,OLED單元後有一個薄膜晶體管(TFT),發光單元在TFT驅動下點亮。主動式的OLED比較省電,但被動式的OLED顯示性能更佳。
TTL單反式取景
這是專業相機上必備的取景方式,也是真正沒有誤差的光學取景方式。這種取景器的取景范圍可達實拍畫面的95%。唯一缺點就是如果鏡頭過小,取景器會很暗,影響手動對焦。幸好現在都具備自動對焦,這一缺點已無大礙。當然,用了ttl單反取景器為了不至於過暗,廠家會用上大口徑高級鏡頭,所以一般是半專業相機才配備此種鏡頭。奧林巴斯(olympus)的相機上經常使用這種取景器。
電子取景
電子取景器(EVF),使用電子取景的視野率比光學取景器就大得多,如索尼DSC-f707的EVF的視野率就達到99%。而電子取景器也較為實用,這種取景方式不僅價格較便宜,使用時很省電,而且能在任何環境光線下採用。盡管取景器中的畫面視角和色彩效果與最終結果不全相同,但使用一段時間後還是很快就會適應的。
光學取景器
傳統普及型相機里常用的那種通過一組與拍攝鏡頭無關(高檔傻瓜機上常與變焦鏡頭連動)的透鏡取景的部件,造價低,但有視差,所看到的並不完全是所拍到的。
普通光學取景
這是最常見的取景方式,其唯一的缺點就是取景誤差大。用過數碼相機的朋友一定知道,數碼相機的光學取景器在近距離拍攝時,上下左右位置誤差與實際拍攝景像的誤差很大(遠距離不是特別明顯),一般說來光學取景器看到的景像約占實際拍攝景像的85%。
預閃曝光
特設預閃曝光功能(pre-flash exposure),在一般的拍攝或微距拍攝時,使用預閃時所接收到的圖像數據,能夠更准確地測出閃光強度及曝光值,令拍攝的影像獲得更佳的曝光程度。
防紅眼功能
指在用閃光燈拍攝人像時,由於被攝者眼底血管的反光,使拍出照片上人的眼睛中有一個紅點的現象。但一般現在的主流數碼相機都具有防紅眼功能,不過如果不打開的話,依舊不會起作用。
防手震功能
數碼相機的防手震功能有兩種:一是光學的,一是數碼的。光學的防手震和傳統相機是一樣的,是在成像光路中設置特使設計的鏡片,能夠感知相機的震動,並根據震動的特點與程度自動調整光路,使成像穩定。
內置應用「super hole accumulation diode(had)」電子畫質提升技術的ccd影像感應器,提高ccd的感應性能及加強數碼信號處理功能,有效地於拍攝影像時降噪及減低不必要的干擾,令畫面更清晰明麗,色彩層次更分明,對現場光源不足或拍攝夜景時效果尤其顯著。
ISO感光值
ISO感光值是傳統相機底片對光線反應的敏感程度測量值,通常以ISO數碼表示,數碼越大表示感旋光性越強,常用的表示方法有ISO 100 、400 、1000等,一般而言, 感光度越高,底片的顆粒越粗,放大後的效果較差,而數碼相機為也套用此ISO值來標示測光系統所採用的曝光,基準ISO越低,所需曝光量越高。
㈣ 目前,一般的數碼相機的每種顏色的深度都是幾位呢,能產生多少位色的色彩圖像呢。
一般都是8位的,單反一般都是10位,有比較好的數碼單反是12位或者14位的
㈤ 在PHOTOSHOP裡面色階是個是什麼作用
色階:主要用於調節圖像的明度。用色階來調節明度,圖
像的對比度、飽和度損失較小。而且色階調整可以通過輸
入數字,對明度進行精確的設定。
要深入理解呢,我建議你在PS中打開一張圖像再試著調整圖
像的色階,你靜看圖像的變化吧.這樣你說能理解PHOTOSHOP
的"色階"的意思了.嘿嘿
㈥ 數碼照片拍攝中的色階問題
你這個問題比較大也只能大致地說說:
數碼相機在拍攝是可以顯示一個叫「色階圖」的,嚴格的說它應該叫:影像亮度分布直方圖。它反映了圖象的各級亮度的組成比例及分布情況。(光影魔術手中打一下Z鍵,會出現一個直方圖,那才是彩色直方圖)
它的縱坐標是數量值(不是亮度),
它的橫坐標是亮度(灰階),左下角(原點)是最暗,最右邊是最亮。
在照相時出現的圖形,我們對它是基本是無法操作的。因為當你取了一個景色,在這個畫面上的明和暗的數量,比例已經固定下來了。它的曲線形狀你是無法改變的,除非你不在這里取景。而我們希望的是在橫坐標上盡可能每個地方都有圖形出現,這樣做的目的是盡量不丟失層次。你能做的工作僅僅就是調整曝光補償(加或減EV值)盡量使在底線上出現一些小小的信號(直方圖)如果調不出來,你只有作罷。
你說的現象我理解,實際上縱軸並不代表亮度,而是反映在橫坐標這個亮度的景物多少,(或是說面積),它超出不超出縱軸,是沒關系的,總體的曝光是由自動曝光確定的。不信你可以對一張白紙,他的圖形將全在右邊,如果有一半是黑色,肯定圖形出現在兩頭(左、右有圖形,中間沒有)。所以在你不太理解的情況下,你可以不去管它。你講的:「色彩自然不自然」的說法,和它的關系不大,至少它不是主要原因。
㈦ 如何確定暴光的正確
如果是數碼相機,看直方圖是很好的方法。
大多數數碼相機的LCD顯示器扮演著取景器和相機的直方圖顯示器的角色。直方圖所提供的信息比相機測光表所提供的信息還要豐富。測光表所建議的曝光量是否正確,我們可以通過分析直方圖來得知照片中暗部和亮部的比例是否合理,因為它的合理與否直接關系著細節的呈現和缺失以及照片的最終視覺效果。
在攝影師進行構圖拍攝時,相機的微處理器也在計算有多少影像感測器的像素落實到了256個色階(明度)之上。相機的微處理器會把256個色階製成圖表。圖表的最左邊的曲線表示100%的純黑,圖表的最右邊的曲線表示100%的純白。圖表的中間的曲線表示明度的等級變化,至於圖表曲線是從左邊開始還是從右邊開始,事實上是辨別不出來的,但是越靠近右邊的曲線其明度就越高。每個曲線的頂點表示照片中位於此明度的像素總量(具體請看前面的直方圖圖表)。在有些數碼相機中,你調節曝光量時直方圖會立刻產生反應,所以在你拍攝前就已經知道了照片的大致效果。這一功能更有利於拍出高動態區域的照片。
動態區域是一種兩個極端之間(最好與最壞、高音與低音或最暗像素的數量與最亮像素的數量)的比率。這一術語被普遍用於音樂和攝影之中。鋼琴的音符范圍很寬都是在不同的高音符比率基礎之上而衍生出來的,而且還可以創造出最低的音符。鐃鈸(高音音栓之一)和大號(風琴音栓之一)的音符范圍都比較窄,因為它們之間最高音符和最低音符之間的差別並不大。從攝影角度來講,動態區域是照片中最暗像素的數量與最亮像素的數量之間的比率。當動態區域比較狹窄時,照片的效果如右小圖所示,圖中橋下的紅點是由於沒有被影像感測器的色域(指數碼相機能夠捕捉到的色彩范圍)所覆蓋的區域。相機通常會使用與色域之外的色值相近的色彩來填補它所捕捉不到的色彩。在右圖中,相機的色域採用了黑色來表現橋底下的陰影中的細節,但是這種表現方法就像一個管弦樂隊里缺少低音配合一樣,總是達不到完美。
動態區域的不足會使亮部的細節流失。在右圖中,直方圖記錄了此照片曝光過度所形成的右側的曲線密集。此照片是由一個拍攝四季風光的攝影師拍攝的,因為他覺得有時僅用一種曝光量拍攝不一定能拍攝出好照片。
他故意設定一個f值進行拍攝曝光過度的照片後,又繼續設定f值(比原先的f值降低了兩檔)進行拍攝了曝光不足的照片。如左下圖中直方圖所示,曲線都向圖的左側聚集。在這種情況下,照片亮部的曝光是正確的但是在第一張照片中能夠看到的陰影中的細節卻被淹沒在黑暗之中了。
攝影師最終通過數碼暗房把上面兩張照片進行了合並。盡管個人的美學修養能夠潛在地指導照片的後期處理,其優勢在於能夠把握住照片的明暗度或光線處理的程度,使照片看起來更加耐看,層次更加豐富,但是沒有直方圖為基礎的話,在後期處理時就會很麻煩。如圖所示,圖中有些曲線頂點和底端之間的過度以及在直方圖中的位置非常合適。此外,應該要避免曲線在直方圖兩端的大起大落,除非被攝物是純黑或純白的物體。
㈧ 數碼相機的各個參數含義和功能
各個參數含義及其功能如下:
有效像素數
有效像素數是指真正參與感光成像的像素值。最高像素的數值是感光器件的真實像素,這個數據通常包含了感光器件的非成像部分,而有效像素是在鏡頭變焦倍率下所換算出來的值。
光學變焦
數碼相機依靠光學鏡頭結構來實現變焦。數碼相機的光學變焦方式與傳統35mm相機差不多,就是通過鏡片移動來放大與縮小需要拍攝的景物,光學變焦倍數越大,能拍攝的景物就越遠。
感光器件
與傳統相機相比,傳統相機使用「膠卷」作為其記錄信息的載體,而數碼相機的「膠卷」就是其成像感光器件,而且是與相機一體的,是數碼相機的心臟。感光器是數碼相機的核心,也是最關鍵的技術。
數碼相機的發展道路,可以說就是感光器的發展道路。目前數碼相機的核心成像部件有兩種:一種是廣泛使用的CCD(電荷藕合)元件;另一種是CMOS(互補金屬氧化物導體)器件。
數碼變焦
數碼變焦是通過數碼相機內的處理器,把圖片內的每個象素麵積增大,從而達到放大目的。這種手法如同用圖像處理軟體把圖片的面積改大,不過程序在數碼相機內進行,把原來CCD影像感應器上的一部份像素使用"插值"處理手段做放大,將CCD影像感應器上的像素用插值演算法將畫面放大到整個畫面。
顯示屏數碼相機與傳統相機最大的一個區別就是它擁有一個可以及時瀏覽圖片的屏幕,稱之為數碼相機的顯示屏,一般為液晶結構(LCD,全稱為Liquid Crystal Display)。
鏡頭類型數碼相機的鏡頭由多片鏡片組成,材質則分為玻璃與塑料兩類。如果數碼相機鏡頭以玻璃為材料,很多用戶及商家都說玻璃鏡頭透光率佳、投射圖像更清晰。
不過目前許多測試報告都顯示,玻璃的透鏡並不一定比塑料材料能帶來更清晰的圖像,同時玻璃鏡頭也可能增加相機重量,因此選購時還是應該做多面向觀察,不要拘泥在鏡頭材質問題上。
光圈
光圈是一個用來控制光線透過鏡頭,進入機身內感光面的光量的裝置,它通常是在鏡頭內。我們平時所說的光圈值 F2.8、F8、F16等是光圈「系數」,是相對光圈,並非光圈的物理孔徑,與光圈的物理孔徑及鏡頭到感光器件(膠片或CCD或CMOS)的距離有關。
光圈F值愈小,在同一單位時間內的進光量便愈多,而且上一級的進光量剛是下一級的一倍,
對於消費型數碼相機而言,光圈F 值常常介於F2.8 - F16。此外許多數碼相機在調整光圈時,可以做1/3級的調整。
快門
快門是相機上控制感光片有效曝光時間的一種裝置。
快門的工作原理是這樣的,為了保護相機內的感光器件,不至於曝光,快門總是關閉的;拍攝時,調整好快門速度後,只要按住照相機的快門釋放鈕(也就是拍照的按鈕),在快門開啟與閉合的間隙間,讓通過攝影鏡頭的光線,使照相機內的感光片獲得正確的曝光,光穿過快門進入感光器件,寫入記憶卡。
至於單反相機常見的B快門功能,雖然可由你自由決定曝光時間的長短,拍攝彈性更高,不過目前大多數的消費性數碼相機都還不能支持,最多提供如2秒、8秒、16秒等較慢速度的默認值。
閃光燈
閃光燈也是加強曝光量的方式之一,尤其在昏暗的地方,打閃光燈有助於讓景物更明亮。使用閃光燈也會出現弊端,
連拍功能
是通過節約數據傳輸時間來捕捉攝影時機。連拍模式通過將數據裝入數碼相機內部的高速存儲器(高速緩存),而不是向存儲卡傳輸數據,可以在短時間內連續拍攝多張照片。
由於數碼相機拍攝要經過光電轉換,a/d轉換及媒體記錄等過程,其中無論轉換還是記錄都需要花費時間,特別是記錄花費時間較多。因此,所有數碼相機的連拍速度都不很快。
短片拍攝功能
即數碼相機具備拍攝視頻文件的功能。有別於DV(數碼攝像機),數碼相機只可以把視頻文件存放在記憶卡裡面,由於記憶體的空間有限,所以視頻文件的質量跟大小都比較差。
錄音功能
即通過數碼相機上自帶的麥克風,進行錄音的功能。由於不是專業的攝像機或者錄音筆,數碼相機所錄取的音頻均為單聲道。數碼相機的錄音功能可大致分為三種:現場短片錄音,標注語音文件和純錄音。
存儲介質
數碼相機將圖像信號轉換為數據文件保存在磁介質設備或者光記錄介質上。如果說數碼相機是電腦的主機,那麼存儲卡相當於電腦的硬碟。存儲記憶體除了可以記載圖像文件以外,還可以記載其他類型的文件,通過USB和電腦相連,就成了一個移動磁碟。
市面上常見的存儲介質有CF卡、SD卡、MMC卡、SM 卡、記憶棒(Memory Stick)、xD卡和小硬碟MICRoDRIVE)。
場景模式
一般而言,數碼相機內預先調節好光圈、快門、焦距、測光方式及閃光燈等參數值,以便於那些經驗不足的用戶拍出有一定質量保證的數碼相片。
為了更加方便初級用戶的使用,數碼相機廠商在數碼相機內加入了數種場景模式,這樣就更加方便拍出高質量的照片。目前,數碼相機內的場景模式少則有四、五種,多則有二三十種。
電池
數碼相機需要電池以維持正常運作。一般情況下,數碼相機可以採用干電池、鹼性鋅錳電池、鎘鎳電池、氫鎳電池、鋰離子電池以及鋰電池等作為其電源。
(8)相機能記錄多少色階擴展閱讀
數碼相機發展簡史
數碼相機的歷史可以追溯到上個世紀四五十年代,1951年賓·克羅司比實驗室發明了錄像機(VTR),這種新機器可以將電視轉播中的電流脈沖記錄到磁帶上。到了1956年,錄像機開始大量生產。它被視為電子成像技術產生。
二十世紀六十年代美國宇航局(NASA)在宇航員被派往月球之前,宇航局必須對月球表面進行勘測。然而工程師們發現,由探測器傳送回來的模擬信號被夾雜在宇宙里其它的射線之中,顯得十分微弱,地面上的接收器無法將信號轉變成清晰的圖像。於是工程師們不得不另想辦法。
在這之後,數碼圖像技術發展得更快,主要歸功於冷戰期間的科技競爭。而這些技術也主要應用於軍事領域,大多數的間諜衛星都使用數碼圖像科技。
早在20世紀60年代,就開始了「CCD晶元」的研究與開發,1969年,貝爾實驗室的George Smith和Willard Boyle將可視電話和半導體泡存儲技術結合,設計了可以數碼相機沿半導體表面傳導電荷的「電荷『泡』器」(Charge 「Bubble」 Devices),率先發明了CCD器件的原型。
當時發明CCD的目的是改進存儲技術,元件本身也被當作單純的存儲器使用。隨後人們認識到,CCD可以利用光電效應來拍攝並存儲圖象。
參考資料:網路 數碼相機
㈨ 相機格式問題
數碼相機一般支持兩種格式,jpg和raw,前者是有損壓縮格式,色階256級(8位),24位色深,由相機處理器對感測器的原始圖像做優化處理後保存;後者一般只在專業機型上提供,比如單反和微單,raw格式保存和感測器的原始數據,無任何相機處理器優化,一般具有10位以上的色階等級,可以在後期電腦上做數字化處理的時候提高更好的可調整性,缺點是文件體積大,存儲時間長,存儲卡的速度要求比較高.
㈩ 什麼是色階
在ph裡面按ctrl+L出來的那個 是一個表示圖片的灰度分布的柱狀圖。
色階在ph裡面指的就是「顏色」,但不是指彩色,而是指顏色的亮度,從白到黑一種是256種亮度,色階圖就是把彩色的當灰度的看,計算出他的灰度分布。
手機屏幕顏色實質上即為色階的概念。色階是表示手機液晶顯示屏亮度強弱的指數標准,也就是通常所說的色彩指數。
目前彩屏手機的色階指數從低到高可分三個層次,最低單色,其次是256色、4096色、 65536色;目前最高的為26萬色。256=2的8次方,即8位彩色,依次律推,65536色=2的16次方,即通常所說的16位真彩色,26萬=2的18次方,也就是18位真彩。其實65536色已基本可滿足我們肉眼的識別需求。
現在市面上普遍見到的一般有三種顏色質量:256色、4096色和64K(即65536)色甚至更高的26萬色。不同顏色質量的顯示效果不同。顯示分成三類:普通文字、簡單圖像(類似卡通這樣的圖像,主要是選單圖表和繪制的待機畫面)和照片圖像。至於對照片質量要求較高的用戶,64K色當然是較好選擇。