Ⅰ 生活中哪些事情用到數學
數學是無處不在的。生活中,很多地方都是要用到數學的。數學給人們的生活帶來了許多便利:
1、小孩每天吃的飯菜,都是媽媽從市場里買來的,這時就要用到數學了。比如「幾斤?」「幾塊?」「幾千克?」這些都得用數學來計算的。同時,孩子的飯量也得用數學來計算,算準了,媽媽才能讓孩子既不挨餓又不浪費。
2、在學校里,老師要很平均地給學生分發文具,這時也要用到數學。去某個地方玩:有多長的路?需要多長時間?等等,都要用到數學。
3、王大媽要在院子里靠牆位置圍個籬笆種菜,怎樣圍最省籬笆呢?要用多少籬笆呢?這里也要用到數學知識。否則,准備的籬笆不是多了就是少了。
4、和朋友去吃披薩,點了個12寸的,結果過了會兒服務員來了說:「不好意思現在做不了12寸了,可以換成兩個6寸的可以嗎,一樣的。」朋友聽了一拍桌子:「能一樣嗎?圓形面積公式是πR平方,四個6寸才等於一個12寸的」。利用數學算披薩的尺寸是否吃虧。
5、當孩子們整理玩具的時候,點數總共有多少種;當和家人一起進餐時點數盤子,碗的數量;去超市時點數貨架上的水果數量;上樓梯的時候點數台階數;點數樹或花的數量,在家和超市之間測量自己行走的步數等都會用到數學。
Ⅱ 生活中的數學10個例子有哪些
1、如果我們去參加一場婚禮,人數超過367人,那麼其中必然有生日相同的人(並非同年)。把m個東西任意分放進n個空抽屜里(m>n),那麼一定有一個抽屜中放進了至少2個東西。由於一年最多有366天,因此在367人中至少有2人出生在同月同日。這相當於把367個東西放入366個抽屜,至少有2個東西在同一抽屜里。
2、冬天,貓睡覺時總是把身體抱成一個球形,是因為這樣身體散發的熱量最少。在數學中,體積一定,表面積最小的物體是球體。貓縮成一個球體,可以減小和外界接觸的面積,降低熱交換的速度,減少熱量損失的速度,節省能量,保持體溫。
3、「繆勒萊耶錯覺」,也叫箭形錯覺。假如一條線段兩端加上向外的兩條斜線,另一條線段兩端加上向內的兩條斜線,則前者要顯得比後者長得多。對於這種錯覺有一種理論,叫神經抑製作用理論,它認為當兩個輪廓彼此貼近時,視網膜上相鄰的神經團會相互抑制,結果輪廓發生了位移,產生錯覺。
4、車輪形狀是圓的。圓的中心叫圓心,圓上任何一點到圓心的距離都是相等的。把車輪做成圓形,車軸在圓心上,當車輪在地面滾動時,車軸離地面的距離,總是等於車輪半徑。因此,車里坐的人,就能平穩地被車子拉著走。假如車輪變了形,不成圓形了,輪上高一塊低一塊,到軸的距離不相等了,車就不會再平穩。
5、風扇的葉片都是奇數。這是因為奇數的葉片組合能比偶數的葉片組合帶來更多的性能優勢。
如果一旦葉片數量為偶數片設計,並形成對稱的排列方式的話,那麼不但使得風扇自身的平衡性難以調整,而且容易使風扇在高速轉時產生更多的共振,從而導致葉片無法長時間承受共振產生的疲勞,最終出現葉片斷裂等情況。因此,軸流風扇的設計多為不對稱的奇數片葉片設計。
同樣的設計理念在日常使用的電風扇或螺旋槳直升飛機的設計中都有體現。如果風扇是三葉結構,葉片製作較寬且葉片根部較強,各個部位的密度的等需均勻;如果為五葉結構,葉片較窄一些,厚度、強度也相對較低。
6、雙色球的中獎概率低。雙色球是由33個紅球和16個藍球組成,每次開獎基本上維持在6個紅球和1個藍球,所以雙色球一等獎的中獎率是1/17720000。也就說有千萬分之一的概率。雖然概率很低,但是因為我國的人口基數非常大,買彩票的人數相對比較多,所以理論上來講是有人能中一等獎的。
7、四葉草被稱為「幸運草」。
三葉草,學名苜蓿草,是多年生草本植物,一般只有三片小葉子,葉形呈心形狀,葉心較深色的部分亦是心形。四葉草是由三葉草基因突變而產生的,它只佔其中的十萬分之一。也就說在十萬株苜蓿草中,你可能只會發現一株是『四葉草』,因為機率太小。因此「四葉草」是國際公認為幸運的象徵。
8、井蓋基本都是圓形。
這是利用了同一個圓內的直徑都相等。只有圓形的井蓋找不到對角線,這樣不論怎麼移動井蓋,蓋子都不會掉下去,那麼在下面施工的工作人員就有安全保障了。如果設計成三角形或者正方形的,蓋兒雖然比窨井口大一些,但還是有掉下去的可能。其實除了安全以外,井蓋做成圓形還有另一個好處就是便於運輸。
9、天有不測風雲。
這涉及到一個數學定義——「混沌」,即「對初始值的極端不穩定性」。常見的「蝴蝶效應」就是混沌的一種現象。在正常情況下,全局性的天氣模式基本上遵循著某些已知的合理進程,通過若干種不同的模擬方式,根據略有差異的初始條件,天氣預報工作者就能推測未來的天氣變化。
然而,天氣是由一系列復雜因素的組合而成的。初始條件的微小變化會使預報結果差異很大,這時,天氣已經進入了混沌區域,預報的時間越長,到達混沌點的可能性就越大,於是,天氣預報的准確率就越不好把握。
10、黃金分割0.618。
0.618,一個極為迷人而神秘的數字,也被稱為黃金分割律,它是古希臘著名數學家畢達哥拉斯於2500多年前發現的。
有一次,畢達哥拉斯路過鐵匠作坊,被叮叮當當的打鐵聲迷住了。為了揭開這清脆悅耳的聲音中隱藏著的秘密。畢達哥拉斯測量了鐵錘和鐵砧的尺寸,發現它們之間存在著十分和諧的比例關系。回到家裡,他又取出一根線,分為兩段,反復比較,最後認定1:0.618的比例最為優美。
Ⅲ 我要5個生活中用數學解決的例子
數學在生活中的運用有很多。
1、老家種菜地,需要用鐵絲圍一個長方形,要多長的鐵絲?
這個用的數學實例:長方形周長=(長+寬)x2
量出菜地的長和寬,用數學公式求出周長,就是需要鐵絲的長度。
2、家裡面裝修,需要准備多少塊地板磚?
用到的數學實例:家中的地面面積以及一塊地板磚的面積
算出家中的實際用地面積,然後算出地板磚的面積,用家中地面面積除以一塊地板磚的面積就是需要購買的地板磚的塊數。
5、上學放學路線問題。
用到的數學原型:兩點之間,線段最短的問題。雖然很簡單,但也是最常見的數學問題。
Ⅳ 生活中的數學有哪些
有很多,舉幾個例子吧。1、風扇的扇葉繞著中心旋轉:過一點有無數條直線。2、三角形的支架:三角形具有穩定性。3、四邊形的推拉門:四邊形具有不穩定性。4、速度、時間、路程三者的函數關系。5、用坐標表示地理位置。6、買彩票是否能中獎,概率問題。7、風箏飛翔平穩是軸對稱圖形的性質的應用。
Ⅳ 生活中的數學例子有哪些
生活中的數學例子有如下:
1、桌子問題:一張方桌,砍掉一個角還剩下幾個角。
2、切豆腐問題: 一塊豆腐切三刀,最多能切成幾塊。
3、切西瓜問題:一個西瓜用三刀切七份,吃完剩下八塊皮,如何做到。
4、竹竿問題:5米長的竹竿能不能通過一米高的門。
5、紙盒問題:邊長一米的方盒子能不能容下一米五的木棍。
6、時鍾問題:經過12小時,時鍾和分針重復多少次。
7、折紙問題:一張1毫米厚的紙,對折1000次,厚度有多高。
8、烙餅問題:烙一張餅用兩分鍾,烙正、反面各用一分鍾,鍋里最多同時放兩張餅,那麼烙三張餅最少用幾分鍾。
9、學校操場大約的面積,一件物體(一袋鹽、幾個蘋果、一瓶墨水等)大概的重量,估計人或物的高度等。
10、為室內裝修戶測量並計算鋪地面用多少地板磚,粉刷四壁和屋頂要購買多少塗料,需多少材料費。
Ⅵ 生活中最常用的數學知識
一、數學的簡單美
日常生活中離不開數,我們無時無刻不在跟數字打交道,紛繁復雜的數是由非常簡單的十個數字構成,即0到9這10個數字,構築起一個無限真與美的王國。這簡直太神奇了。數學,就是一個人造的宇宙。
二、幾何圖形的對稱美
蜜蜂的蜂窩構造非常精巧、適用而且節省材料。蜂房由無數個大小相同的房孔組成,房孔都是正六角形,每個房孔都被其它房孔包圍,兩個房孔之間只隔著一堵蠟制的牆。令人驚訝的是,房孔的底既不是平的,也不是圓的,而是尖的。這個底是由三個完全相同的菱形組成。有人測量過菱形的角度,兩個鈍角都是109°28′而兩個銳角都是70°32′。令人叫絕的是,世界上所有蜜蜂的蜂窩都是按照這個統一的角度和模式建造的。
蜂房的結構引起了科學家們的極大興趣。經過對蜂房的深入研究,科學家們驚奇地發現,相鄰的房孔共用一堵牆和一個孔底,非常節省建築材料;房孔是正六邊形,蜜蜂的身體基本上是圓柱形,蜂在房孔內既不會有多餘的空間又不感到擁擠。
蜂窩的結構給航天器設計師們很大啟示,他們在研製時,採用了蜂窩結構:先用金屬製造成蜂窩,然後再用兩塊金屬板把它夾起來就成了蜂窩結構。這種蜂窩結構強度很高,重量又很輕,還有益於隔音和隔熱。因此,現在的太空梭、人造衛星、宇宙飛船在內部大量採用蜂窩結構,衛星的外殼也幾乎全部是蜂窩結構。因此,這些航天器又統稱為「蜂窩式航天器」。蜜蜂建造的蜂窩都是正六邊形的。
另外,大自然的鬼斧神工使幾何圖形的對稱美成了造型藝術、建築美學的基礎。雪花的對稱性就是大自然的傑作,它的形狀,也是正六角形。多美的結構啊,線條流暢、美麗大方而且牢固結實。晶體的平面對稱極為精巧,並由此內含著深刻的物理性質。在人類賴以生存的生活實際中,小到衣物裝飾、首飾、生活用品,大到房屋建築(比如屋頂、窗格、地面、雕梁、畫棟等),幾乎到處都有美麗的對稱圖形裝飾,古代皇宮中壁畫的邊飾、項光和藻井,都含有極為壯麗的對稱美。
現在,我們創建衛生城市、文明城市、宜居城市等等。街道兩旁門面房的門頭、樓房外的亮化設施,全部都是統一的矩形,這是為什麼呢?因為矩形既簡單又對稱,所以很美觀。
Ⅶ 日常生活中的數學知識有哪些
比如:房間里有長、寬、高,正方形、長方形、有表面積、有立體圖形、球形;鍾表(度數、時間);有用的錢(加、減、乘、除);等等數學在生活中用的最廣,無時無刻都在。
數學看起來是一門很深奧學科,有的題目就算你想死了幾百個腦細胞,還是雲里霧里,暈頭轉向,但其實數學是離我們是很近的,它就在我們身邊,仔細觀察,生活處處都有數學的痕跡。
先從家裡開始吧,我們平時用的時鍾,有的上面只有四個數字,分別是3、6、9、12,呵呵,都是三的倍數呢!但事實可沒這么簡單。
原來,這四個數字,從12開始,每轉到一個數字,就增加四分之一時,這樣,就十分好計算,再說這四個數字在鍾表上的排列,位置不是互相平行,就是相差九十度,連起來正好是一個十字,看起來十分美觀。
再說說我們去超市,買的一些買二贈一的物品,比如一袋薯片單個買是6元,但是三袋一起買就只要12元,由此可以推算出,三袋一起買的價格,如果換成—袋,是4元,比單個買要劃算。
其實,生活無處不數學,只要留心觀察,這高深的科目就在你身邊。
Ⅷ 生活中有哪些的數學知識
我們生活中有哪些地方用到數學知識,到處都用到,例如:買東西計算價錢、存錢計算本利和、買房計算遮光用相似形,搬東西到房間會用到勾股定理、房間擺設......都用到數學知識。請採納
Ⅸ 生活中的數學有哪些 生活中的數學有哪些例子
1、工資的計算。財務收入與支出,日常的消費管理等等。
2、數學加減乘除的計算。如商品的買賣,日期的計算,時間的計算。
3、面積的計算。自家的住房面積,公園的佔地面積,操場的活動面積等等。
4、騎自行車的時候用腳蹬一圈腳踏板自行車行走的米數。我們可以去測量車輪的半徑,再用圓的周長公式求出來。
5、遲到的時候需要在執勤人員那裡登記,要求寫下年級班級姓名。這樣學校就會知道這個星期哪個班的遲到人數最多,哪個班遲到人數最少。