Ⅰ 在生活中有哪些進制數
生活中常用的有10進制,和2進制,2進制常用在開關之類的,10進制就是生活中使用的一切數字。
Ⅱ 在日常生活中,常用的數制有哪些呢
在日常生活中,常用的數制有:二進制,三進制,四進制。
二進製作為計算技術中廣泛採用的一種數制,兩個數字便可表示所有數字,二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。
當前的計算機系統使用的基本上是二進制系統,數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
進制
在基數b的位置記數系統(其中b是一個正自然數,叫做基數),b個基本符號(或者叫數字)對應於包括0的最小b個自然數。 要產生其他的數,符號在數中的位置要被用到。最後一位的符號用它本身的值,向左一位其值乘以b。
整數部分採用 "除2取余,逆序排列"法。具體做法是:用2整除十進制整數,可以得到一個商和余數;再用2去除商,又會得到一個商和余數,如此進行,直到商為小於1時為止,然後把先得到的余數作為二進制數的低位有效位,後得到的余數作為二進制數的高位有效位,依次排列起來。
Ⅲ 生活中還有哪些進制計數法
生活中的進制計數法有:四進制、五進制、十進制、十二進制、三十進制。
Ⅳ 生活中有哪些不同的進制
常見的有二進制,八進制,十進制,十六進制,十二進制。
二進制和十六進制運用於當前的電子領域,比如電腦編程;
十二進制運用於鍾表;
十進制普遍運用在日常生活中,比如計算數學。
Ⅳ 生活中有哪些不同的進制
1、十進制
人類天然選擇了十進制。
由於人類解剖學的特點,雙手共有十根手指,故在人類自發採用的進位制中,十進制是使用最為普遍的一種。成語「屈指可數」某種意義上來說描述了一個簡單計數的場景,而原始人類在需要計數的時候,首先想到的就是利用天然的算籌——手指來進行計數。
十進制編碼幾乎就是數值本身。
數值本身是一個數學上的抽象概念。經過長期的演化、融合、選擇、淘汰,系統簡便、功能全面的十進制計數法成為人類文化中主流的計數方法,經過基礎教育的訓練,大多數的人從小就掌握了十進制計數方法。
盤中放了十個蘋果,通過數蘋果我們抽象出來「十」這一數值,它在我們的腦海中就以「10」這一十進制編碼的形式存放和顯示,而不是其它的形式。從這一角度來說,十進制編碼幾乎就是數值本身。
十進制的基數為10,數碼由0-9組成,計數規律逢十進一。
2、二進制
二進制有兩個特點:它由兩個數碼0,1組成,二進制數運算規律是逢二進一。
為區別於其它進制,二進制數的書寫通常在數的右下方註上基數2,或在後面加B表示,其中B是英文二進制Binary的首字母。
例如:二進制數10110011可以寫成(10110011)2,或寫成10110011B。對於十進制數可以不加標注,或加後綴D,其中D是英文十進制Decimal的首字母D。計算機領域我們之所以採用二進制進行計數,是因為二進制具有以下優點:
二進制數中只有兩個數碼0和1,可用具有兩個不同穩定狀態的元器件來表示一位數碼。例如,電路中某一通路的電流的有無,某一節點電壓的高低,晶體管的導通和截止等。二進制數運算簡單,大大簡化了計算中運算部件的結構。二進制天然兼容邏輯運算。
3、八進制
由於二進制數據的基數R較小,所以二進制數據的書寫和閱讀不方便,為此,在小型機中引入了八進制。八進制的基數R=8=2^3,有數碼0、1、2、3、4、5、6、7,並且每個數碼正好對應三位二進制數,所以八進制能很好地反映二進制。八進制用下標8或數據後面加O表示。
4、十六進制
由於二進制數在使用中位數太長,不容易記憶,所以又提出了十六進制數。
十六進制數有兩個基本特點:它由十六個數碼:數字0~9加上字母A-F組成(它們分別表示十進制數10~15),十六進制數運算規律是逢十六進一,即基數R=16=2^4,通常在表示時用尾部標志H或下標16以示區別,在c語言中用添加前綴0x以表示十六進制數。
名詞介紹
進位制/位置計數法是一種記數方式,故亦稱進位記數法/位值計數法,可以用有限的數字元號代表所有的數值。可使用數字元號的數目稱為基數(en:radix)或底數,基數為n,即可稱n進位制,簡稱n進制。現在最常用的是十進制,通常使用10個阿拉伯數字0-9進行記數。
對於任何一個數,我們可以用不同的進位制來表示。比如:十進數57(10),可以用二進製表示為111001(2),也可以用五進製表示為212(5),也可以用八進製表示為71(8)、用十六進製表示為39(16),它們所代表的數值都是一樣的。
Ⅵ 在生活中除了二進制十進制與16進制我們常用的還有哪些進制
60進 24進
Ⅶ 生活中除了十進制還有哪些常見的進制
1、二進制
二進製作為計算技術中廣泛採用的一種數制,兩個數字便可表示所有數字,二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。
當前的計算機系統使用的基本上是二進制系統,數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
2、三進制
三進制以3為底數的進位制,三進制數有0、1、2三個數碼,逢三進一。在計算機發展的早期,採用了一種偏置了的三進制(對稱三進制),有-1<一般用T表示>、0、1三個數碼,這種三進制逢+/-2進一。
3、四進制
四進制以4為基數的進位制,以 0、1、2 和 3 四個數字表示任何實數。四進制與所有固定基數的計數系統有著很多共同的屬性,比如以標準的形式表示任何實數的能力,以及表示有理數與無理數的特性。
4、四進制
四進制以4為底數的進位制,以 0、1、2 和 3 四個數字表示任何實數。四進制與所有固定底數的記數系統有著很多共同的屬性,比如以標準的形式表示任何實數的能力,以及表示有理數與無理數的特性。
5、八進制
Octal,縮寫OCT或O,一種以8為基數的計數法,採用0,1,2,3,4,5,6,7八個數字,逢八進1。一些編程語言中常常以數字0開始表明該數字是八進制。八進制的數和二進制數可以按位對應(八進制一位對應二進制三位),因此常應用在計算機語言中。
Ⅷ 生活中的進制有哪些
生活中的進制有:
二進制,五進制,七進制,八進制,十進制,十二進制,十六進制,二十四進制,六十進制,三百六十進制等等。