Ⅰ 高溫熱解爐是如何處理垃圾的
我國大部分城市處理垃圾都是採用露天堆放、自然填溝和填坑等方式處理,沒有任何防護措施,使大量垃圾污水由地表滲入地下,對城市環境和地下水源造成嚴重污染,隨著高溫熱解爐的出現,這種垃圾處理方式逐步被淘汰。
高溫熱解爐採用一種高溫熱處理技術,就是以一定的過剩空氣量與被處理的有機廢物在焚燒爐內進行氧化燃燒反應,廢物中的有害有毒物質在高溫下氧化、熱解而被破壞,這是一種可同時實現廢物無害化、減量化、資源化的處理技術。
高溫熱解爐是將垃圾置於高溫爐中,使其中可燃成分充分氧化的一種方法,產生的熱量用於發電和供暖。該系統的焚燒爐在燃燒垃圾時可將濕度達百分之7的垃圾變成乾燥的固體進行焚燒,焚燒效率達百分之95以上。
使用高溫熱解爐的主要目的就是減量化,甚至是無量化,使被焚燒的物質變為無害處理,並盡量減少新的污染物質產生,避免造成二次污染,非常適合處理有機成分多、熱值高的廢物,它可以有效降低廢物焚燒成本,從而使焚燒法獲得較好的經濟效益
Ⅱ 用高溫裂解爐焚燒垃圾有什麼好處
穩定的高溫焚燒系統,可以減少二惡英的排放。二惡英有毒且致癌,並且是長久性污染物。
Ⅲ 固體廢棄物的處置工藝過程是什麼
固體廢棄物的處理方法與工藝過程,看以下圖片
2.1傳統處理方法
2.1.1土地填埋
土地填埋法是在地面上建造經過特殊防滲透工藝處理的相對封閉的設施內貯存固體廢棄物,防止其污染土壤或水體。土地填埋法的優點是處理量大、便於管理、成本低廉及適應性強,常用於經濟不夠發達而土地資源豐富的地區。但在填埋過程中可能會產生重金屬或其他環境污染物,填埋後產生的滲濾液也是一個不可忽視的污染源,其中含有高濃度的有機污染物及重金屬。
2.1.2焚燒法
焚燒法是使固體廢物與空氣發生化學反應,最終生成水、二氧化碳與灰燼,經過凈化後排入大氣。焚燒法處理後,殘余灰燼僅占原體積的5%,可以有效減小佔地面積。而且焚燒可產生大量熱,可用於發電和供暖等,多用於人口稠密、土地資源不足的區域。但對焚燒法會產生大氣污染物,同時產生的飛灰中還存在多環芳烴等有毒有機污染物,因此需要加裝尾氣處理裝置。
2.1.3好氧堆肥法
好氧堆肥法是指微生物在有氧條件下中通過生物化學反應對固體廢棄物進行分解,將有毒物質轉變為無毒物質,最終將固體廢棄物轉化為類腐殖質物質的方法。堆肥法常用於處理城市生活垃圾,產物可用於農業耕作中作肥料或土壤改良劑,優點是成本低、易操作,能實現固體廢棄物的資源化利用。但堆肥過程中存在重金屬的積累與富集,可能使重金屬元素通過食物鏈進入人類體內,從長遠角度看會帶來不可忽視的環境風險。
2.2新式處理方法
2.2.1熱解法
熱解法是在無氧或缺氧的條件下對固體廢物進行加熱蒸餾,使其高溫裂解,冷凝後生成新的固體、液體、氣體物質,並從中提取可燃氣體、液態油、固體燃料的方法。
熱解法處理後殘渣較少,可有效降低固體廢棄物的體積,且由於反應條件為無氧或缺氧[1]。因此,向大氣中排放的污染物較少,同時重金屬、S等有毒元素被固定在炭黑等固體產物中,防止它們在環境中轉移從而對人體造成危害。
2.2.2蚯蚓處理技術
蚯蚓處理技術一般用於處理生活垃圾、農林廢棄物與畜禽糞便。蚯蚓通過砂囊和消化道對有機物進行研磨、破碎,一方面可以通過自身的同化代謝將有機物降解,另一方面可以釋放出N、P、K等營養元素促進植物生長。蚯蚓處理技術的優點是環境影響小,對有機物消化徹底;使大量農業副產品得到有效利用,避免了資源浪費。但它同時要考慮到如何選擇喜好有機物質且耐高溫的蚯蚓品種並為蚯蚓提供適宜的生存條件。
3固體廢物資源化利用措施
固體廢物種類眾多,根據《中華人民共和國固體廢物污染環境防治法》,大致可將固體廢物分為城市生活垃圾、工業固體物和危險廢物。
3.1城市生活垃圾資源化利用
在城市化進程中,固體廢物的產生不可避免,針對產生的生活垃圾等固體廢物進行資源化利用方式也多種多樣。例如,通過焚燒回收熱量,通過熱解回收燃料和氣體,通過厭氧發酵回收沼氣,並產生生物肥料。(1)通過收集高熱量固體廢物經受高溫熱處理,固體廢物中的可燃成分與氧氣反應釋放熱量,再以熱能形式將這些熱量進行回收,作為城市供熱使用。(2)熱解是利用固體廢物中的熱不穩定性使其在缺氧或厭氧條件下熱分解以產生可燃氣體,油和固體碳[2]。(3)生物發酵則是將城市垃圾等有機物進行厭氧發酵,經過產酸階段和產甲烷階段,進而生成沼氣,可作為照明、熱源等資源使用。
3.2工業固體廢棄物資源化利用
工業固體廢棄物資源化的利用是實現中國經濟健康發展的重要途徑之一。目前,我國工業固體廢物資源化利用主要包括以下幾種方法:(1)生產建材;(2)回收或利用其中的有用成分,開發新產品,以取代某些工業原料;(3)築路、築壩與回填;(4)生產農肥和土壤改良。例如:工業固體廢物中的塑料,樹脂,橡膠等可通過熱解產生可燃氣體如氫氣。純碳或聚合的聚合物碳質材料,以及甲醇等燃料油;高爐渣、煤灰等固體廢物可以作為建築原材料或吸附材料等實現資源再利用;大力回收舊家用電器和電子廢物,將其重新拆解利用,從源頭以盡量減少廢物的發生[3]。
3.3危險廢物資源化處理
一直以來,危險廢物的處置一般都採用安全填埋、固化法、化學法以及高溫焚燒等方式,綜合利用效率很低。隨著我國固體廢物綜合利用技術的不斷發展,危險廢物資源化的利用技術也得到空前發展,在重金屬、污泥、電子廢棄物方面都有長足發展。在電子廢棄物方面,隨著我國電子經濟的飛速發展,越來越多的電子產品生產,也越來越多的電子廢棄物產生,將電子廢棄物進行拆解、物理分選後,採用超聲協同技術進行浸出回收,將有效利用電子廢棄產品。在危廢污泥方面,採用水泥窯協同處置是近年廣泛使用的一種技術[4]。污泥通過不同方式的前處理,進入水泥窯高溫煅燒,不僅可以去除粉煤灰中的二惡英,還可以固化重金屬。飛灰經過處理後能夠代替水泥原材料,從而能夠循環利用廢物。在重金屬方面,利用熱等離子技術和熔融技術,將重金屬富集和分離,起到回收利用的目的。
Ⅳ 農林廢物的熱解技術有哪些
在無氧或者缺氧的條件下,對固體廢物中的有機物進行加熱,使其發生不可逆的化學變化,主要是使高分子的化合物分解為低分子化合物的處理技術,稱為熱分解技術,簡稱熱解。熱解處理的主要產物包括氣體部分(如氫氣、甲烷、一氧化碳、二氧化碳等)、液體部分(如甲醇、丙酮、醋酸、焦油、溶劑油、水溶液等)和固體部分(主要是炭黑)。不同於僅有熱能可以回收的焚燒處理,熱解技術可產生便於貯存運輸的燃氣、燃油等。適合於熱解技術應用的固體廢物主要包括廢塑料(含氯廢物除外)、廢橡膠、廢輪胎、廢油和油泥、有機污泥等。城市生活垃圾、農林廢棄物(如纖維素類物質)的熱解技術也在蓬勃發展之中 。
1. 生物質是植物光合作用直接或間接轉化的產物。生物質能是指利用生物質生產的能源。目前,作為能源的生物質主要是農林廢棄物、城市和工業有機廢棄物以及動物糞便等。本文所指的生物質具體指農林廢棄物,即農林作物收獲和加工過程中所產生的廢棄物質和垃圾,如秸稈(玉米稈、花生稈、棉花稈、高梁稈、豆類稈等)、糠皮、山茅草、灌木枝、枯樹葉、藤蔓、木屑、皮殼、刨花、鋸末等,以及食品加工業排出的殘渣,如餅粕、酒糟、甜菜渣、廢糖蜜、蔗渣、食品工業下腳料等。
我國每年產生的各種農林廢棄物有15億,其中農業廢物資源分布廣泛,僅農作物秸桿年產量就7億噸,可作為能源用途的秸桿約3.5億噸,摺合標准煤1.8億噸;薪炭林和林業及木材加工廢物的資源量約摺合3億噸標准煤,相當於我國石化能源消耗量的1/10還要多。另外,一些油料作物還是製取液體燃料的優質原料,如麻瘋樹、油菜籽、蓖麻、漆樹、黃連木和甜高粱等。預計到2020年,農林廢棄物約合11.65億噸標准煤,可開發量約合8.3億噸標准煤。另外,目前全國還有5700~公頃宜林地和荒沙荒地,l億公頃不適宜發展農業的邊際土地資源,發展林木生物質能源潛力巨大。
雖然目前新開發的生物質資源的綜合利用途徑相當多,並且有些途徑生物質資源利用率和經濟效益都很高,但消耗量小,不能從根本上解決農林廢棄物資源的處理和利用問題。生物質作為能源能夠最大量地回收利用農林廢棄物資源,其產物不但不存在銷路問題,還能替代傳統燃料,緩解日趨嚴重的能源危機,能夠產生良好的社會經濟效益和環境效益。
2生物質能轉化機理和技術途徑
生物質均由纖維素、半纖維素和木質素等高聚物組成,其基本液化反應分別如下:根據熱重分析,纖維素在325 K時,開始降解,隨著溫度升高,降解加劇,到623~643 K時,降解為低分子碎片。其降解過程如下:
而半纖維素結構上帶有支鏈,比纖維素更易降解,其降解機制與纖維素相似。木質素結構單元通過醚鍵和c—c鍵相聯,結構比纖維素、半纖維素要復雜得多,木質素的熱化學液化反應首先是烷基醚鍵的斷裂反應。木質素大分子在高溫、供氫溶劑存在下,通過自由基反應,首先斷裂成低分子碎片,其基本反應如下:
通過以上過程,形成小分子碎片,這些碎片進一步通過側鏈C—O鍵、C—C鍵及芳環C—O鍵斷裂形成低分子量化合物。以上是生物質降解為低分子的基本斷裂反應。
快速熱解是一個加熱速率極快,而滯留時間極短且快速冷卻的過程,是一個瞬間完成的過程。上述過程對生物質的降解仍然適用,然而時間極短,可近似等溫過程。從反應物與生成物來看有如下過程:
Larfldt J等進行大量研究後,根據反應動力學提出4種熱解模式:
模式2、3中炭的餾分通過計算預測,模式 l、4中有競爭反應,因而炭產量有變化。生產過程中,即使用最佳工藝參數,也不能生成單一產物,但通過調整參數可使反應盡可能向所需產物方向發展。如模式1中溫度在500℃左右時,極高的加熱速率、很短的滯留時間和快速冷卻,能提高其K2值,主要產物為焦油,故模式1更適合快速熱解。
目前生物質能的轉化技術主要有3種:(1)生物質經生物化學處理轉化為富含能量的燃料。如將生物質(農作物秸稈、糞便、有機廢水等)發酵製得沼氣,糖和澱粉原料發酵制酒精。我國在這方面的技術比較成熟,但在大規模處理生物質中將會受到生物質種類和生物技術的限制。(2)生物質經化學處理轉化為高價值的化工產品。如利用生物質中的半纖維素在酸性介質下加熱獲得糠醛,利用稻殼生產白炭黑等。(3)生物質經熱化學處理,即生物質在隔絕或少量氧氣的條件下,熱解反應獲得可燃氣體、固體木炭和液體生物油3類產品,又稱生物質熱裂解(生物質熱解)。一般地說,生物質熱解分低溫慢速熱解(<400℃),產物以木炭為主;高溫閃速熱解(700~1000℃),產物以可燃氣體為主;中溫快速熱解(400~650℃),產物以生物油為主。快速熱解技術,即生物質瞬間熱解製取液體燃料油,是20世紀70年代末國外研究人員研究開發的。其收率高達70%以上,並有文獻報道液體生物油的產率最高可達85%,是一種很有開發前景的生物質應用技術。
液體產物收率相對較高的快速熱解技術,最大的優點在於其產物生物油易存貯、運輸,為工農業大宗消耗品,不存在產品規模和消費的地域限制問題。生物油不但可以簡單替代傳統燃料,而且還可以從中提取出許多較高附加值的化學品。通過分散熱解、集中發電的方式,熱解生物油通過內燃機、燃氣渦輪機、蒸汽渦輪機完成發電,這些系統可產生熱和能,能夠達到更高的系統效率,一般為35%~45%,從而解決了發電要求的規模效益,並大大降低了農林廢棄物的運輸和貯存費用高、佔用場地大的問題。
3國內外生物質快速熱解技術的研究現狀
該技術始於20世紀70年代末,迄今為止,為降低快速熱解法的生產成本(按等熱值粗略折算,2 t生物原油可摺合1 t石化燃料,則目前生產l石油當量噸的生物原油的成本遠比生產1 t石化燃料的成本要高),各國已經對多種反應器和工藝進行了研究,特別是歐、美等發達國家,在進行全面的理論研究的基礎上,已建立了相應的實驗裝置。快速熱解法生產的液體燃料可以替代許多鍋爐、發動機及透平機所用的燃油,而且還可以從中萃取或衍生出一系列化學物質,如食品添加劑、樹脂、葯劑等。正因為這些優勢,快速熱解技術越來越受到關注,工藝發展有了長足的進步。
在美國,採用循環流化床反應器和輸送床反應器生產食品添加劑已投入商業運營,生產能力達l~2 t/h。歐洲各國多採用鼓泡流化床反應器,現在西班牙、英國分別建成了200 kg/h的試驗廠,義大利建成了500 kg/h的示範裝置。為了方便熱解液化方面的學術交流和技術合作,歐洲在1995年專門成立了一個PyNE組織(Pyrolysis Net. work for Europe),擁有18個成員國;2001年成立了GasNet(Europe Biomass Gasification Network),現已擁有20個成員國以及8家工業單位成員。這些組織成立以來,在快速熱解液化技術的開發以及生物油的利用方面做了大量富有成效的工作。
我國關於生物質快速熱解研究較為薄弱,但近幾年也有不少科研院所在這方面開展了工作。沈陽農業大學開展了國家科委「八五」重點攻關項目「生物質熱裂解液化技術」的研究工作,他們在生物質熱裂解過程的實驗和理論分析方面做了很有成效的工作。浙江大學、中科院化工冶金研究所和廣州能源所、河北省環境科學院等單位近年來也進行了生物質流化床或循環流化床液化實驗。山東工程學院開發了等離子體快速加熱生物質液化技術,利用實驗室設備液化玉米秸粉,制出了生物油,並進行了成分分析。
國外的生物質能工作者偏重於不同類型的快速熱解反應器的開發,以期提高生物油的產率。因為反應器能極大地影響化學反應體系的熱量、動量、質量傳遞過程,設計合理的反應器可改善物料和溫度在反應體系中的分布,從而提高化學反應的速度和進行程度。從實踐中看,國外研製的某些反應器具有非常高的生物油產率。國內工作者著眼於通過控制溫度、使用催化劑、尋找適宜的物料來探索提高生物油產量和質量的途徑。
在生物質快速熱解生產液體燃料的工藝中,反應器都是其核心部分,反應器的類型及加熱方式的選擇在很大程度上決定了產物的最終分布。因此,反應器類型和加熱方式的選擇是各種技術路線的關鍵環節。作為一種只有30多年發展歷史的新工藝,在技術、產品和應用方面還存在許多不足,至今未實現大規模工業化應用。目前,亟待解決的問題有:(1)鼓勵開發、改進工藝和設備;(2)工業放大;(3)降低成本;(4)改善生物油使用性能;(5)開發有價值的生物油副產品;(6)處理輸送和使用過程的環境衛生與安全。
4生物質自混合下行循環流化床快速熱解技術
山東科技大學化工學院清潔能源研究中心提出生物質自混合下行循環流化床快速熱解技術,正處於實驗研究階段,並有一套處理量為200~300 kg/h的示範裝置在建設中。
農林廢棄物被錘片式粉碎機粉碎成合適的生物質顆粒,經煙氣提升管乾燥和提升,生物質顆粒被旋分器氣固分離進入上部料倉。經螺旋進料器在專有熱解反應器頂端,與通過蝶閥控制下落的高溫循環熱載體迅速實現自混合、升溫、熱解。在反應器立管下部油氣與半焦和熱載體快速分離。熱解油氣經冷凝器獲得液體產品和煤氣。半焦和循環熱載體通過熱空氣輸送的返料閥進入燒焦提升管燃燒加熱,加熱後的熱載體經旋分器
與煙氣分離後進入專有熱解反應器頂部,實現熱載體循環供熱,煙氣預熱空氣後被引到煙氣提升管底部,提升和乾燥生物質顆粒。
生物質自混合下行循環流化床快速熱解工藝流程見圖l。
其技術優點:
(1)專有熱解反應器為靜態混合結構,無機械運動部件,可解決機械設備存在的高溫時焦渣磨損設備、設備的運動部件容易出現故障以及難以工業化放大的難題。
(2)專有熱解反應器利用重力、無需載氣即可實現生物質顆粒和高溫循環熱載體的快速混合、快速升溫和熱解,提高液體收率和系統熱效率。
(3)利用煙氣余熱乾燥生物質顆粒,降低了生物油的水含量,提高了系統熱效率。
(4)反應器立管下部油氣與半焦和熱載體通過專有快速分離裝置,減少了高溫熱解油氣的二次反應,提高了液體收率。
生物質自混合下行循環流化床快速熱解新技術是根據我國農村農林廢棄物集散難度較大的國情,利用先進技術研製開發的一種熱效率高、投資低、操作方便的快速熱解工藝。
該熱解工藝為徹底實現農林作物資源的最大化利用、實現農業循環經濟、提高農民收入、改善農村產業結構、改善農村缺能現狀,解決剩餘秸稈就地焚燒或隨意堆棄造成大氣污染、土壤礦化勢加劇、火災和交通事故等大量的社會經濟和生態問題提供了技術支撐和指導方向,對農業和農村發展以及化石能源危機的緩解,都有重要的現實意義。
Ⅳ 垃圾磁化裂解爐與垃圾熱解氣化工藝有何優勢
摘要 低溫裂解爐的優勢:
Ⅵ 垃圾焚燒爐都有哪幾種工作原理是什麼
垃圾焚燒爐有6種,分別是:流化床焚燒爐、機械爐排焚燒爐、回轉式焚燒爐、氣化熔融焚燒爐、脈沖拋式爐排焚燒爐、CAO焚燒爐。
1、流化床焚燒爐
工作原理:
爐體是由多孔分布板組成,在爐膛內加入大量的石英砂,將石英砂加熱到600℃以上,並在爐底鼓入200℃以上的熱風,使熱砂沸騰起來,再投入垃圾。垃圾同熱砂一起沸騰,垃圾很快被乾燥、著火、燃燒。未燃盡的垃圾比重較輕,繼續沸騰燃燒,燃盡的垃圾比重較大,落到爐底,經過水冷後,用分選設備將粗渣、細渣送到廠外,少量的中等爐渣和石英砂通過提升設備送回到爐中繼續使用。
特點:
可回收垃圾中的有用物質,焚燒爐焚燒的是分類後的有機垃圾,發熱量高,生成一氧化碳等可燃氣體多,發電量高。但在我國,實際生活垃圾分類相當少,CAO爐不太適宜我國的垃圾焚燒。
Ⅶ 生活垃圾熱解技術與裂解技術有什麼不同
從方法上來說都是一樣的,用加熱、缺氧的方法,使生活垃圾發生化學變化,有機物解析揮發。
具體得看上下文語境。估計熱解就是指廣義的缺氧加熱,而裂解類似與分解反應,強調生活垃圾的自分解,所以更加偏向於絕氧熱解。
Ⅷ 生活垃圾焚燒爐的檢測分析原理是什麼
生活垃圾焚燒爐,是焚燒生活垃圾的設備,生活垃圾在爐膛內燃燒,變為廢氣進入二次燃燒室;在採用熱解干餾氣化技術處理生活垃圾時,垃圾在爐內溫度和水蒸氣的作用下發生化學反應;在燃燒器的強制燃燒下燃燒完全,再進入噴淋式除塵器,除塵後經煙囪排入大氣。
生活垃圾焚燒爐集自動送料、分篩、烘乾、焚燒、清灰、自動化控制於一體。採用高溫燃燒,二次加氧,自動卸渣的高新技術措施,達到排污的監控要求。
生活垃圾焚燒爐、工業垃圾焚燒爐、醫療垃圾焚燒爐、廢氣焚燒爐、動物屍體焚燒爐、醫院垃圾焚燒爐。二次燃燒,旋風過濾除塵、無黑煙,符合國家規定排放標准。
生活垃圾只需簡單分揀即可入爐燃燒,燃燒充分完全。它是一種完全徹底的消毒器,多級燃燒。燃燒後殘渣體積相對原體積減少90%左右,重量減少90%~95%,爐體耐腐蝕,耐高溫,使用壽命長。
Ⅸ 垃圾焚燒爐在生活中起到了什麼作用
1、消除細菌和病原菌,高溫無害化處理。
2、焚燒可產生供使用的灰;3、可以避免直接燃燒產生的煙霧。
4、能量回收:可將垃圾中的能量轉換成蒸汽,電或熱水。
5、焚燒范圍廣:焚燒爐可以燃燒所有不能使用的可燃垃圾。垃圾焚燒爐是一種常用於醫療和生活垃圾產品和動物無害化處理的無害化處理設備。其原理是利用煤,燃料油,燃氣等燃料的燃燒,對待加工物進行高溫焚燒和碳化,達到消毒處理的目的。具體工作原理:垃圾通過自動送料裝置送到焚燒爐的乾燥床進行乾燥,然後送到第一級爐篦,爐篦在高溫下揮發裂開,爐篦拋出通過脈沖空氣動力學裝置。垃圾一步一步被扔進下一階段的爐排。此時,聚合物材料破裂而其它物質被燃燒,直到它燃燒,它進入灰渣坑並被自動除渣裝置排出。燃燒空氣從爐排中的氣孔注入並與垃圾混合燃燒,同時垃圾懸浮在空氣中。揮發和破裂的物質進入第二級燃燒室進一步裂解和燃燒,未燃燒的煙氣進入第三級燃燒室完全燃燒;高溫煙氣通過鍋爐的加熱面加熱蒸汽,煙氣通過冷卻後排出。為了解決煙霧和炭黑污染問題,首先要將燃燒溫度提高到700℃,然後再提高到800~1100℃。那時,人們都意識到空氣量的影響和溫度輸入模式。煙氣採取了煙囪,鼓風機,風機等措施,以增加通風量,滿足燃燒空氣的需求。影響鋼結構的因素很多,不僅通過改變鋼的化學成分來改變鋼的結構,而且還通過改變焚燒爐的熱處理