㈠ DNA复制过程
DNA复制过程
以原核生物DNA复制过程予以简要说明
1.DNA双螺旋的解旋
DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程
(1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白)
ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。
(2)DNA解链酶(DNA helicase)
DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5’—〉3’方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3’—〉5’方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。
(3)DNA解链过程
DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5’—3’持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。
2.冈崎片段与半不连续复制
因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5’—〉3’方向,另一条是3’—〉5’方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5’—〉3’方向,不是3’—〉5’方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。
3.复制的引发和终止
所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3’端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。
(四)端粒和端粒酶
1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。
在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5’端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3’—OH作为引物,最后余下子链的5’无法填补,于是染色体就短了一点。
在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。
端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。
至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。
㈡ DNA为什么叫脱氧核糖核酸,它是脱氧的吗,为什么要脱氧,DNA又是什么样的
脱氧核糖核苷酸是由嘌呤碱或嘧啶碱、脱氧核糖以及磷酸三种物质组成的化合物。
所谓的脱氧核糖核苷酸是指他所含有的五碳糖的一个羟基脱了一个氧
如果不脱氧,在形成DNA链的时候,这个羟基会作用于DNA链,导致DNA链不稳定。
㈢ 人类基因组怎样形成的
人类基因组,又译人类基因体,是智慧人种的基因组。共组成24个染色体,分别是22个体染色体、X染色体与Y染色体,含有约30亿个DNA碱基对。碱基对是以氢键相结合的两个含氮碱基,以A、T、C、G四种碱基排列成碱基序列。其中一部分的碱基对组成了大约20000到25000个基因。
全世界的生物学与医学界在人类基因组计划中,调查人类基因组中的真染色质基因序列。发现人类的基因数量比原先预期的更少,其中的外显子,也就是能够制造蛋白质的编码序列,只占总长度的1.5%。
现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。
人类只有一个基因组,大约有5万~10万个基因。
随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发生巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状况将会提高,21世纪的医学基础将由此奠定。
利用基因,人们可以改良果蔬品种,提高农作物的品质,更多的转基因植物和动物、食品将问世,人类可能在新世纪里培育出超级作物。通过控制人体的生化特性,人类将能够恢复或修复人体细胞和器官的功能,甚至改变人类的进化过程。
人类基因组计划人类基因组计划(HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体10万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。
1986年,诺贝尔奖获得者Renato Dulbecco发表短文《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055~1056)。文中指出:“如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。……从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对DNA的详细知识而得到巨大推动。”
什么是基因组·基因组就是一个物种中所有基因的整体组成。人类基因组有两层意义:遗传信息和遗传物质。要揭开生命的奥秘,就需要从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。
为什么选择人类的基因组进行研究?因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律、疾病的诊断和治疗、了解生命的起源。
测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。
在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。
HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。
HGP的主要任务是人类的DNA测序,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。
1.遗传图谱
遗传图谱又称连锁图谱,它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cm)为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000多个遗传标记已经能够把人的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可把这一基因定位于这一已知区域,再对基因进行分离和研究。对于疾病而言,找基因和分析基因是个关键。
第一代标记:经典的遗传标记,例如ABO血型位点标记,HLA位点标记。20世纪70年中后期,限制性片段长度多态性(RFLP),位点数目大与105,用限制性内切酶特异性切割DNA链,由于DNA的一个“点”上的变异所造成的能切与不能切两种状况,可产生不同长度的片段(等位片段),可用凝胶电泳显示多态性,从片段多态性的信息与疾病表型间的关系进行连锁分析,找到致病基因。如Huntington症。但每次酶切2~3个片段,信息量有限。
第二代标记:1985年,小卫星中心、可变串联重复VNTR可提供不同长度的片段,其重复单位长度为6~12个核苷酸,1989年微卫星标记系统被发现和建立,重复单位长度为2~6个核苷酸,又称简短串联重复(STR)。
第三代标记:1996年MIT的Lander ES又提出了SNP(single nucleotide polymorphysm)的遗传标记系统。对每一核苷酸突变率为10~9,双等位型标记,在人类基因组中可达到300万个,平均约每1250个碱基对就会有一个。3~4个相邻的标记构成的单倍型(haplotype)就可有8~16种。
2.物理图谱
物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。DNA物理图谱是指DNA链的限制性酶切片段的排列顺序,即酶切片段在DNA链上的定位。因限制性内切酶在DNA链上的切口是以特异序列为基础的,核苷酸序列不同的DNA,经酶切后就会产生不同长度的DNA片段,由此而构成独特的酶切图谱。因此,DNA物理图谱是DNA分子结构的特征之一。DNA是很大的分子,由限制酶产生的用于测序反应的DNA片段只是其中的极小部分,这些片段在DNA链中所处的位置关系是应该首先解决的问题,故DNA物理图谱是顺序测定的基础,也可理解为指导DNA测序的蓝图。广义地说,DNA测序从物理图谱制作开始,它是测序工作的第一步。制作DNA物理图谱的方法有多种,这里选择一种常用的简便方法——标记片段的部分酶解法,来说明图谱制作原理。
用部分酶解法测定DNA物理图谱包括两个基本步骤:
(1)完全降解:选择合适的限制性内切酶将待测DNA链(已经标记放射性同位素)完全降解,降解产物经凝胶电泳分离后进行自显影,获得的图谱即为组成该DNA链的酶切片段的数目和大小。
(2)部分降解:以末端标记使待测DNA的一条链带上示踪同位素,然后用上述相同酶部分降解该DNA链,即通过控制反应条件使DNA链上该酶的切口随机断裂,而避免所有切口断裂的完全降解发生。部分酶解产物同样进行电泳分离及自显影。比较上述二步的自显影图谱,根据片段大小及彼此间的差异即可排出酶切片段在DNA链上的位置。下面是测定某组蛋白基因DNA物理图谱的详细说明。
完整的物理图谱应包括人类基因组的不同载体DNA克隆片段重叠群图,大片段限制性内切酶切点图,DNA片段或一特异DNA序列(STS)的路标图,以及基因组中广泛存在的特征型序列(如CpG序列、Alu序列,isochore)等的标记图,人类基因组的细胞遗传学图(即染色体的区、带、亚带,或以染色体长度的百分率定标记),最终在分子水平上与序列图的统一。
基本原理是把庞大的无从下手的DNA先“敲碎”,再拼接。以Mb、kb、bp作为图距,以DNA探针的STS(sequence tags site)序列为路标。1998 年完成了具有52000个序列标签位点(STS),并覆盖人类基因组大部分区域的连续克隆系的物理图谱。构建物理图的一个主要内容是把含有STS对应序列的DNA的克隆片段连接成相互重叠的“片段重叠群(contig)”。用“酵母人工染色体(YAC)作为载体的载有人DNA片段的文库已包含了构建总体覆盖率为100%、具有高度代表性的片段重叠群”,近几年来又发展了可靠性更高的BAC、PAC库或cosmid库等。
3.序列图谱
随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱。
HGP对人类的重要意义
1.HGP对人类疾病基因研究的贡献
人类疾病相关的基因是人类基因组中结构和功能完整性至关重要的信息。对于单基因病,采用“定位克隆”和“定位候选克隆”的全新思路,导致了亨廷顿舞蹈病、遗传性结肠癌和乳腺癌等一大批单基因遗传病致病基因的发现,为这些疾病的基因诊断和基因治疗奠定了基础。对于心血管疾病、肿瘤、糖尿病、神经精神类疾病(老年性痴呆、精神分裂症)、自身免疫性疾病等多基因疾病是目前疾病基因研究的重点。健康相关研究是HGP的重要组成部分,1997年相继提出:“肿瘤基因组解剖计划”“环境基因组学计划”。
2.HGP对医学的贡献
基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。
3.HGP对生物技术的贡献
(1)基因工程药物:分泌蛋白(多肽激素,生长因子,趋化因子,凝血和抗凝血因子等)及其受体。
(2)诊断和研究试剂产业:基因和抗体试剂盒、诊断和研究用生物芯片、疾病和筛药模型。
(3)对细胞、胚胎、组织工程的推动:胚胎和成年期干细胞、克隆技术、器官再造。
4.HGP对制药工业的贡献
筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟——药物作用“口袋”。
个体化的药物治疗:药物基因组学。
5.HGP对社会经济的重要影响
生物产业与信息产业是一个国家的两大经济支柱;发现新功能基因的社会和经济效益;转基因食品;转基因药物(如减肥药,增高药)。
6.HGP对生物进化研究的影响
生物的进化史,都刻写在各基因组的“天书”上;草履虫是人的亲戚——13亿年;人是由300万~400万年前的一种猴子进化来的;人类第一次“走出非洲”——200万年的古猿;人类的“夏娃”来自于非洲,距今20万年——第二次“走出非洲”。
7.HGP带来的负面作用
侏罗纪公园不只是科幻故事;种族选择性灭绝性生物武器;基因专利战;基因资源的掠夺战;基因与个人隐私。
㈣ 人的基因与动物的基因有什么不同的
基因的概念:基因物质组成上就是DNA 一种由糖 碱基 磷酸 组成的大分子
其中糖和磷酸只有一种
碱基有4种不同的碱基
由于碱基序列的排列有无限种 所以DNA所含有的信息是大量的
好比计算机仅仅是0/1的二进制编码 就可以有许许多多的信息
相同:人和动物的基因从物质上看是完全一样的 都是DNA 都是一样的化学物质
不同:区别就在于DNA组成的单位排列顺序不同 以及大小不同
人大约几百万个核苷酸(组成DNA的单体物质)
这些核苷酸有一定的排列顺序 基因就是一段的排列顺序 而许多基因合起来就组成完整的DNA
给你一个基因序列图来说明吧 这就是某个基因
人和动物都有许多基因 有些基因是相同的 也有些基因是不同的
基因的功能就是控制生物性状
人和动物都有一些相同的性状 比如都是有四肢 有头 有心脏 这些基因就是差不多相同的
有些性状比如动物全身披毛等等不同的性状 那控制这些性状的基因就是不一样的
㈤ 原始DNA分子是如何形成的
生物多样性包括物种多样性与生态系统多样性。物种多样性与生态系统多样性主要是由于不定向变异与定向选择在进化过程中共同作用的结果。
而从DNA的机构特点来看,DNA分子是规则的双螺旋结构,结构特点:
1、DNA分子是由两条链组成,两条链按反向平行方式盘旋成双螺旋结构;
2、DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在
内侧;
3、DNA分子两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律。
组成DNA分子的碱基只有四种,但碱基对的排列顺序千变万化构成了DNA分子的多样性生物体内,一个最短的DNA分子有4000个碱基对其排列顺序方式有:44000种。从分子水平说明了遗传多样性(基因多样性),从而说明了生物体具有多样性。
另外生物的生长环境不同,基因突变方向不定向。而自然选择决定了变化方向,使DNA发生定向改变,从而转录和翻译出的蛋白质不同,性状不同,就形成了生物多样性。
㈥ 请用生物化学方面知识说明一下DNA复制过程及步骤
DNA复制过程
以原核生物DNA复制过程予以简要说明
1.DNA双螺旋的解旋
DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程
(1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白)
ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质.原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应.ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环.所以,ssbDNA蛋白只保持单链的存在,不起解旋作用.
(2)DNA解链酶(DNA helicase)
DNA解链酶能通过水解ATP获得能量以解开双链DNA.这种解链酶分解ATP的活性依赖于单链DNA的存在.如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动.复制时,大部分DNA解旋酶可沿滞后模板的5’—〉3’方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3’—〉5’方向移动的.故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA.
(3)DNA解链过程
DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等.一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链.两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成.因此前导链与后随链的差别在于前者从复制起始点开始按5’—3’持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段.
2.冈崎片段与半不连续复制
因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5’—〉3’方向,另一条是3’—〉5’方向,两个模板极性不同.所有已知DNA聚合酶合成方向均是5’—〉3’方向,不是3’—〉5’方向,因而无法解释DNA的两条链同时进行复制的问题.为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型.1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA.延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物.另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA.一般说,原核生物的冈崎片段比真核生物的长.深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制.
3.复制的引发和终止
所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3’端开始合成新的DNA链.对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去.对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与.后随链的引发过程由引发体来完成.引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体.引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止.由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA..
(四)端粒和端粒酶
1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒.现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位.
在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5’端的RNA引物被切除后,空缺是如何被填补的提出了质疑.如不填补岂不是 DNA每复制一次就短一点.以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链.但是DNA聚合酶 I 催化合成DNA时,需要自由3’—OH作为引物,最后余下子链的5’无法填补,于是染色体就短了一点.
在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象.人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限.但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题.在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因.
端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力.同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的.
至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks).
㈦ 最初的DNA是怎样形成/生命是如何产生的
整个问题都可以用概率,随机,偶然这样的字眼概括。除了密码子。如果你说有机物,蛋白质,核酸等等与生命有关的信息都是偶然产生的。但密码子怎么解释?我认为无论怎么随机都随机不出来一套完整的密码子,而且密码子是全生物界共用,也就是说密码子的产生在生命的最初期,这更缩短了给他产生的几率,太奇妙了,简直无法想象,这可能就是我最想弄懂的问题。
㈧ 生物DNA双螺旋结构和DNA复制的问题!答的好有加分!
你说的第一个问题和双螺旋结构没什么关系,是DNA的一级结构。
核酸是由很多单核苷酸聚合形成的多聚核苷酸(polynucleotide),DNA的一级结构即是指四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。核苷酸之间的连接方式是:一个核苷酸的5′位磷酸与下一位核苷酸的3′-OH形成3′,5′磷酸二酯键,构成不分支的线性大分子,其中磷酸基和戊糖基构成DNA链的骨架,可变部分是碱基排列顺序。核酸是有方向性的分子,即核苷酸的戊糖基的5′位不再与其它核苷酸相连的5′末端,以及核苷酸的戊糖基3′位不再连有其它核苷酸的3′末端,两个末端并不相同,生物学特性也有差异。
DNA的复制过程
(一)DNA的半保留复制
Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,他们推测,DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋分开,每条链分别作模板合成新链,每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。
(二)DNA复制的起始,方向和速度
DNA在复制时,双链DNA解旋成两股分别进行。其复制过程的复制起点呈现叉子的形式,故称复制叉。以复制叉向前移动的方向为标准,一条模板链为3’—〉 5’走向,在其上DNA能以5’—〉3’方向连续合成,称为前导链(leading strand);另一条模板链为5’—〉3’走向,在其上DNA也是5’—〉3’方向合成,但与复制叉移动的方向正好相反,故随着复制叉的移动形成许多不连续的冈崎片段,最后在连成一条完整的DNA链,该链称为后随链(lagging strand)。实验证明DNA的复制是由一个固定的起始点开始的。一般把生物体的单个复制单位称为复制子。一个复制子只含一个复制起点。一般说,细菌,病毒即线粒体DNA分子均作为单个复制子完成其复制,真核生物基因组可以同时在多个复制起点上进行双向复制,即它们的基因组包括多个复制子。多方面的实验结果表明,大多数生物内DNA的复制都是从固定的起始点以双向等速方式进行的。复制叉以DNA分子上某一特定顺序为起始点,向两个方向等速生长前进。
(三)DNA复制过程
以原核生物DNA复制过程予以简要说明
1.DNA双螺旋的解旋
DNA在复制时,其双链首先解开,形成复制叉,而复制叉的形成则是由多种蛋白质及酶参与的较复杂的复制过程
(1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白)
ssbDNA蛋白是较牢固的结合在单链DNA上的蛋白质。原核生物ssbDNA蛋白与DNA结合时表现出协同效应:若第1个ssbDNA蛋白结合到DNA上去能力为1,第2个的结合能力可高达103;真核生物细胞中的ssbDNA蛋白与单链DNA结合时则不表现上述效应。ssbDNA蛋白的作用是保证解旋酶解开的单链在复制完成前能保持单链结构,它以四聚体的形式存在于复制叉处,待单链复制后才脱下来,重新循环。所以,ssbDNA蛋白只保持单链的存在,不起解旋作用。
(2)DNA解链酶(DNA helicase)
DNA解链酶能通过水解ATP获得能量以解开双链DNA。这种解链酶分解ATP的活性依赖于单链DNA的存在。如果双链DNA中有单链末端或切口,则 DNA解链酶可以首先结合在这一部分,然后逐步向双链方向移动。复制时,大部分DNA解旋酶可沿滞后模板的5’—〉3’方向并随着复制叉的前进而移动,只有个别解旋酶(Rep蛋白)是沿着3’—〉5’方向移动的。故推测Rep蛋白和特定DNA解链酶是分别在DNA的两条母链上协同作用以解开双链DNA。
(3)DNA解链过程
DNA在复制前不仅是双螺旋而且处于超螺旋状态,而超螺旋状态的存在是解链前的必须结构状态,参与解链的除解链酶外还有一些特定蛋白质,如大肠杆菌中的 Dna蛋白等。一旦DNA局部双链解开,就必须有ssbDNA蛋白以稳定解开的单链,保证此局部不会恢复成双链。两条单链DNA复制的引发过程有所差异,但是不论是前导链还是后随链,都需要一段RNA引物用于开始子链DNA的合成。因此前导链与后随链的差别在于前者从复制起始点开始按5’—3’持续的合成下去,不形成冈崎片段,后者则随着复制叉的出现,不断合成长约2—3kb的冈崎片段。
2.冈崎片段与半不连续复制
因DNA的两条链是反向平行的,故在复制叉附近解开的DNA链,一条是5’—〉3’方向,另一条是3’—〉5’方向,两个模板极性不同。所有已知DNA聚合酶合成方向均是5’—〉3’方向,不是3’—〉5’方向,因而无法解释DNA的两条链同时进行复制的问题。为解释DNA两条链各自模板合成子链等速复制现象,日本学者冈崎(Okazaki)等人提出了DNA的半连续复制(semidiscontinuous replication)模型。1968年冈崎用3H脱氧胸苷短时间标记大肠杆菌,提取DNA,变性后用超离心方法得到了许多3H 标记的,被后人称作冈崎片段的DNA。延长标记时间后,冈崎片段可转变为成熟DNA链,因此这些片段必然是复制过程中的中间产物。另一个实验也证明DNA 复制过程中首先合成较小的片段,即用DNA连接酶温度敏感突变株进行试验,在连接酶不起作用的温度下,便有大量小DNA片段积累,表明DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶链成大分子DNA。一般说,原核生物的冈崎片段比真核生物的长。深入研究还证明,前导链的连续复制和滞后链的不连续复制在生物界具有普遍性,故称为DNA双螺旋的半不连续复制。
3.复制的引发和终止
所有的DNA的复制都是从一个固定的起始点开始的,而DNA聚合酶只能延长已存在的DNA链,不能从头合成DNA链,新DNA的复制是如何形成的?经大量实验研究证明,DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶从RNA引物3’端开始合成新的DNA链。对于前导链来说,这一引发过程比较简单,只要有一段RNA引物,DNA聚合酶就能以此为起点,一直合成下去。对于后随链,引发过程较为复杂,需要多种蛋白质和酶参与。后随链的引发过程由引发体来完成。引发体由6种蛋白质构成,预引体或引体前体把这6种蛋白质结合在一起并和引发酶或引物过程酶进一步组装形成引发体。引发体似火车头一样在后随链分叉的方向前进,并在模板上断断续续的引发生成滞后链的引物RNA短链,再由DNA聚合酶 III 作用合成DNA,直至遇到下一个引物或冈崎片段为止。由RNA酶H降解RNA引物并由DNA聚合酶 I 将缺口补齐,再由DNA连接酶将每两个冈崎片段连在一起形成大分子DNA.。
(四)端粒和端粒酶
1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。
在弄清楚DNA复制过程之后,20世纪70年代科学家对DNA复制时新链5’端的RNA引物被切除后,空缺是如何被填补的提出了质疑。如不填补岂不是 DNA每复制一次就短一点。以后随链复制为例,当RNA引物被切除后,冈崎片段之间是由DNA聚合酶 I 催化合成的DNA填补之,然后再由DNA连接酶将它们连接成一条完整的链。但是DNA聚合酶 I 催化合成DNA时,需要自由3’—OH作为引物,最后余下子链的5’无法填补,于是染色体就短了一点。
在正常体细胞中普遍存在着染色体酶复制一次端粒就短一次的现象。人们推测,可能一旦端粒缩短到某一阈限长度一下时,他们就会发出一个警报,指令细胞进入衰老;或许是当细胞判断出它们的染色体已变得太短了,于是分裂也就停止了,造成正常体细胞寿命有一定界限。但是在癌细胞中染色体端粒却一直维持在一定长度上,这是为什么?这是因为DNA复制后,把染色体末端短缺部分补上需要端粒酶,这是一种含有RNA的酶,它既解决了模板,又解决了引物的问题。在生殖细胞和85%癌细胞中都测出了端粒酶具有活性,但是在正常体细胞中却无活性,20世纪90年代中期,Blackburn首次在原生动物中克隆出端粒酶基因。
端粒酶在癌细胞中具有活性,它不仅使癌细胞可以不断分裂增生,而且它为癌变前的细胞或已经是癌性的细胞提供了时间,以积累附加的突变,即等于增加它们复制,侵入和最终转移的能力。同时人们也由此萌生了开发以端粒为靶的药物,即通过抑制癌细胞中端粒酶活性而达到治疗癌症的目的。
至于真核细胞DNA末端的结构特点,早就在1978年Blackburn就以原生动物四膜出(一种纤毛虫)为例说明之:① 迥纹形式的发夹环;② 仅由C,A组成的简单序列大量重复(C4A2)20~70;③ 链上有许多缺口(nicks)。
㈨ 什么叫做基因链
基因链为DNA的别称。
DNA:
作为染色体的一个成分而存在于细胞核内,功能为储藏遗传信息。DNA 分子巨大,由核苷酸组成。核苷酸的含氮碱基为腺嘌呤、鸟嘌呤、胞嘧啶及胸腺嘧啶;戊糖为脱氧核糖。
DNA 的结构:
由一对多核苷酸链围绕一个共同的中心轴盘绕构成。糖 -磷酸链在螺旋形结构的外面,碱基朝向里面。两条多核苷酸链通过碱基间的氢键相连,形成相当稳定的组合。
(9)动物基因链是怎么形成的扩展阅读:
主要类别
1、单链DNA
单链DNA大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。
2、闭环DNA
闭环DNA没有断口的双链环状DNA,亦称为超螺旋DNA。
3、连接DNA
连接DNA(Linker DNA):核小体中除147bp核心DNA 外的所有DNA。
4、模板DNA
模板DNA可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好)。
5、互补DNA
互补DNA构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子。