A. 生物具有遗传性和变异性,例如,举个例子
1、遗传性
一般体现为生物前后代的相似,也就是子代按照亲代所历经的同一过程和方式,把从环境中摄取的物质组织起来,产生类似其亲代复本的一种自身繁殖的过程。
不论哪一种生物,从最简单的原核生物象病毒和细菌等,到真核生物象各种低等的和高等的动植物,借助于遗传,才能“物生其类,保持物种的相对稳定。
例如,先天性心脏病即为一种遗传病,患有先天性心脏病的父母所生子女患此病的概率较大。
2、变异性
在生物个体发育过程中,当环境条件不符合其遗传性的需要时,这种生物体或者死亡,或者被迫同化这种新的条件,通过新陈代谢类型的改变,形成与其亲代不同的性状,即遗传性发生了变异。
例如:在南茶北引中,许多茶树品种的抗寒性增强了,这就是茶树遗传性发生变异的典型实例。
(1)动物的性状遗传有哪些扩展阅读
遗传和变异的相互关系是:
1、 遗传是定向的,变异是不定向的。
2、变异是遗传的源泉和基础,变异是进化的原因。
3、遗传和变异都是生物逐渐适应环境的结果。
4、变异可分为可遗传变异和不可遗传变异。
B. 动物遗传学
动物学是研究生物中遗传物质的遗传传递和表达及其在该过程中发生变异的规律的科学,是生物学领域中最基本的科学之一,也是动、植物良种繁育的重要理论基础
动物遗传学是动物育种学的理论基础和畜牧兽医学科重要的专业基础课程
1、遗传因素(如基因)制约每个生命个体的一切生命活动。一切生命活动包括:生命的发生、发展、昌盛、衰落、消亡等
2、遗传因子(基因)决定了动物的性状、行为、疾病
性状:高/矮、肥胖/苗条、漂亮/丑陋、秃头、长寿
行为:生物种、犯罪、聪明、特长发展疾病:遗传病、肿瘤、常见病
3、遗传育种是动物育种最常用的手段
4、遗传工程改造是动物最稳定、最有意义的品种改良技术
5、遗传因子- -基因是生命科学的核心,而21世纪是生命科学的世纪
C. 生物:由细胞质遗传控制的生物性状有哪些
植物中:紫茉莉的枝条;
藏报春、玉米、棉花等叶绿体的遗传;
高粱、水稻等雄性不育的遗传;
微生物中:链孢霉线粒体
动物:线粒体的遗传
D. 生物的性状和遗传变异
生物体性状的相对稳定——遗传和变异
在生物的繁殖过程中有一个引人注目的现象,即同种生物世代之间性状上的相对稳定。种瓜得瓜,种豆得豆。这就是生物的遗传。在生物的繁殖过程中还有另一个引人注目的现象,即同种生物世代之间或同代不同个体之间的性状不会完全相同。例如,同一个稻穗上的籽粒,长成的植株在性状上也有或多或少的差异;甚至一卵双生的兄弟也不可能一模一样,这种差异是表现,就是生物的变异。
遗传和变异是生命活动中的一对矛盾,既对立又统一。遗传是相对的、保守的;而变异则是绝对的、发展的。没有遗传,不可能保持物种的相对稳定;没有变异,也就不可能有新的物种的形成,不可能有今天这样一个丰富多彩、形形色色的生物界。
由于遗传物质的改变所引起的变异是遗传的;由于环境条件的改变所引起的变异,一般只表现于当代,不能遗传下去。也就是说,变异可分为两大类:遗传的变异和不遗传的变异。这里要强调指出,这两类变异的划分是相对的。因为在一定的环境条件下通过长期定向的影响和选择,由量变的积累可以转化为质变,不遗传的变异就有可能形成为遗传的变异。
生物性状的遗传,以生殖细胞作为桥梁。即在配子形成过程中的减数分裂后,当配子形成合子时,又恢复了亲代体细胞染色体的数目和内容。而DNA恰是染色体重要的成分,所以,染色体是DNA的主要载体,基因是有遗传效应的DAN片段。
遗传物质的变化发展规律,直接关系到生命物质运动中的稳定和不稳定。遗传物质的稳定传递,使生物表现出遗传,这关系到生物种族的稳定发展;遗传物质的不稳定传递,使生物表现出变异,这关系到生物种族的向前发展进化。这充分体现了生命物质(主要是核酸、蛋白质)运动和变化发展的一些重要规律。
遗传物质的主要载体——染色体
染色体在细胞的有丝分裂、减数分裂和受精过程中能够保持一定的稳定性和连续性。这是最早观察到的染色体与遗传有关的现象。染色体的主要成分是 DNA和蛋白质。染色体是遗传物质的主要载体,因为绝大部分的遗传物质(DNA)是在染色体上的。也有少量的DNA在线粒体和叶绿体中,所以线粒体和叶绿体被称为遗传物质的次要载体。
在遗传学研究和育种实践中,根据生物性状在群体(自然群体或杂交后代群体)内的遗传变异规律,将其划分为质量性状和数量性状两大类。
凡不易受环境条件的影响、在一个群体内表现为不连续性变异的性状称为质量性状(qualitative character),例如孟德尔所研究的豌豆子粒的形状(圆满与皱缩)、子叶的颜色(黄色与绿色)、花的颜色(红色与白色)等等。质量性状是受一个或少数几个效应大的基因(称为主基因)决定的,受环境影响较小,所以呈现非连续变异的、因而能对群体内的各个体进行明确分类的性状。豌豆的花色、动物的性别、人类的各种血型系统等都属于这类性状。在遗传研究中,由于质量性状容易跟踪,也常把它作为标记性状。
凡容易受环境条件的影响、在一个群体内表现为连续性变异的性状称为数量性状(quantitative character),又称为计量性状(metrical character)。在生物界中,与质量性状相比,数量性状的存在更普遍、更广泛;农作物的大部分农艺性状都是数量性状,例如植物籽粒产量或营养体的产量、株高、成熟期、种子粒 重、蛋白质和油脂含量、甚至是抗病性和抗虫性等.
由于质量性状表现为不连续性变异,对于杂交后代的分离群体,能够用孟德尔所采用的研究方法,根据所具相对性状的差异,将各个体明确地分组归类,可以求出各 类型间所包含个体数目的比例关系,并可用文字形容和描述各类型的特征。
由于数量性状在自然群体或杂交后代的分离群体内,不同个体间表现为连续性变异,各个体不能用孟德尔方法作出明确的分组归类,不能用分析质量性状的方法来分析数量性状,而是采用生物统计学的方法对性状的遗传变异作定量的描述,对性状的遗传动态进行研究。
然而质量性状和数量性状的划分不是绝对的,例如:
对于同一种作物的同一性状,在不同亲本材料的杂交组合中可能表现不同,例如水稻和小麦等的株高。
有些性状在主基因遗传的基础上,还存在一组微效基因—修饰基因,例如小麦和水稻种皮的红(深红或紫黑)色与白色,在一些杂交组合中表现为一对基因的分离,而在另外的一些杂交组合中,F2的子粒颜色呈不同程度的红色而成为连续性变异,即表现出数量性状变异的特征。
在实际应用中,凡是容易受环境条件影响的性状,都可以用研究数量性状的方法去作遗传分析。
数量性状一般容易受环境条件的影响而发生变异,而这种变异是不能遗传的。
E. 猪有哪些繁殖性状其选择效果如何
猪的繁殖性状,包括猪的多产性即窝产仔数、仔猪初生重、断奶仔猪数、泌乳力(21日龄窝重)、产仔间隔和初产日龄等。总的说来,繁殖性状都属于低遗传力性状,靠传统的选择方法不会取得明显效果。
窝产仔数
包括总产仔数(包括木乃伊和死胎在内)和产活仔数(出生24小时内同窝存活的仔猪数,包括衰弱即将死亡的仔猪在内)两性状。产仔数的遗传力低,一般只有0.1左右。由于产仔数的遗传力低,曾认为对其选择是无效或微效的,而随着选择方法的进步,提高产仔数的选择效果已成为可能。初生个体重与初生窝重是指仔猪出生后吃初乳之前秤得的个体重和全窝重。初生个体重的遗传力估计值约0.10,不宜作为选择指标,因为除遗传因素外,初生个体重还受品种、母猪年龄、胎次和妊娠期营养等因素的影响。初生窝重的遗传力为0.20左右,可作为现场繁殖记录的一项指标,度量起来比较容易。泌乳力一般用21日龄全窝重来表示,其中包括代养仔猪,但不包括已寄养出去的仔猪。母猪泌乳力的高低,直接影响着仔猪的成活和哺乳期的生长,由于母猪排放乳汁的生理特点,很难直接准确度量排乳量,其遗传力估计值较低,为0.15左右。断奶性状包括断奶时仔猪数、个体重和窝重。一般情况下,断奶性状的遗传力估计值高于初生性状,但仍然属于低遗传力范畴。国外报道的断奶仔猪数的遗传力估计值为0.12,变动范围为0.0~0.35,我国地方猪种的估值与之吻合。断奶窝重的遗传力高于断奶个体重,据美国全国猪改良联合会估计,21日龄窝重的遗传力为0.20,它与产仔数、初生窝重、断奶仔猪数和个体重等性状密切相关。因此,实践中一般把它作为选择性状。
纵观对繁殖性状选择所采用的方法,大致有多世代选择、家系指数选择、高繁殖力选择、后裔测定、母猪生产力指数、间接选择等,而动物模型BLUP法和分子标记技术的应用,则大大加快了猪繁殖性状的遗传改良速度。英国育种学家Webb于1999年曾预计,BLUP法、梅山猪和高产仔数基因(ESR基因)的可能效应加以综合,在未来10年内,窝产活仔数的遗传改进量将可能达到4头。
F. 遗传的类型
细胞质遗传
1.概念:细胞质遗传(cytoplasmic
inheritance):细胞质内的基因,即细胞质基因所控制的遗传现象和遗传规律。
2.特点及原因
(1)特点
①母系遗传:不论正交还是反交,Fl性状总是受母本(卵细胞)细胞质基因控制;
②杂交后代不出现一定的分离比。
(2)原因
①受精卵中的细胞质几乎全部来自卵细胞;
②减数分裂时,细胞质中的遗传物质随机不均等分配。
3.物质基础:细胞质基因:线粒体、叶绿体中的DNA上和细菌质粒上的基因。
4.相关概念:染色体外基因:也叫细胞质基因,是细胞器和细胞质颗粒中的遗传物质统称。质粒、卡巴粒、叶绿体基因、线粒体基因等。
质粒:原核、细菌、小环DNA。松弛型和严紧型2类。
线粒体基因:mtDNA,线状、环状,能单独复制,同时受核基因控制。哺乳动物:无内含子,有重叠基因突变率高。
叶绿体基因:ctDNA,环状,可自主复制,也受核基因控制。
卡巴粒:草履虫体内细胞质颗粒
细胞质遗传:子代的性状是由细胞质内的基因所控制的遗传现象。也叫母系遗传、核外遗传、细胞质遗传、母体遗传、非孟德尔式遗传
G. 生物的遗传和变异是普遍存在的请你举出五个遗传和变异现象的实例
遗传现象的实例:种豆得豆,种瓜得瓜。龙生龙,凤生凤,老鼠生儿会打洞。小猫的后代还是小猫。父母的血型是什么样的血型,子女的血型与父母的一致。小狗的后代还是小狗。
变异现象的实例:一母生九子,九子各不同。一树结果,酸甜各异。父母肤色正常,生了白化病的孩子。在自然界找不到相同的两片树叶。花生果实有大果和小果。
遗传现象是指经由基因的传递,使后代获得亲代的特征、性状的一种现象。遗传学是研究这一现象的学科。
在丰富多彩的生物界中,蕴含着形形色色的变异现象。在这些变异现象中,有的仅仅是由于环境因素的影响造成的,并没有引起生物体内的遗传物质的变化,因而不能够遗传下去,属于不遗传的变异。
有的变异现象是由于生殖细胞内的遗传物质的改变引起的,因而能够遗传给后代,属于可遗传的变异。可遗传的变异有三种来源:基因突变,基因重组,染色体变异。没有变异就没有进化,这是从古到今所有进化论者毋庸置疑的共识。但是,关于变异的来源以及如何交织于成种过程(渐变—突变)。
(7)动物的性状遗传有哪些扩展阅读:
遗传现象:产生遗传现象的原因是生物体内具有遗传物质。 遗传物质的基础是脱氧核糖核酸(DNA),亲代将自己的遗传物质DNA传递给子代,而且遗传的性状和物种保持相对的稳定。遗传物质在生物进程之中得以代代相承,从而使后代具有与前代相近的性状。
变异现象;正常人的红细胞是圆饼状的,镰刀型细胞贫血症患者的红细胞却是弯曲的镰刀状的。这样的红细胞容易破裂,使人患溶性贫血,严重时会导致死亡,分子生物学的研究表明,镰刀型细胞贫血症是由基因突变引起的一种遗传病。
基因突变是染色体的某一个位点基因的改变。基因突变使一个基因变成它的等位基因,并且通常会引起一定的表现型变化。例如,小麦从高秆变成矮秆,普通羊群中出现了短腿的安康羊等,都是基因突变的结果。
基因突变在生物进化中具有重要意义。它是生物变异的根本来源,为生物进化提供了最初的原材料。
引起基因突变的因素很多,可以归纳为三类:一类是物理因素,如X射线、激光等;另一类是化学因素,是指能够与DNA分子起作用而改变DNA分子性质的物质,如亚硝酸、碱基类似物等;第三类是生物因素,包括病毒和某些细菌等。
H. 动物的遗传与变异的资料
说的不太清楚啊,到底是什么样的资料啊?看看这个吧,但愿有用。
遗传和变异
一、染色体是遗传物质的主要载体
1.染色体的化学成分
染色体的主要成分为DNA和组蛋白,两者含量比率相近,此外,还有少量非组蛋白和RNA。组蛋白为含赖氨酸和精氨酸比较多的碱性蛋白质,带正电荷。其功能是参与维持染色体结构,有阻碍NDA转录RNA的能力。非组蛋白为含天门冬氨酸、谷氨酸等酸性蛋白质,带负电荷。非组蛋白的特点是:既有多样性又有专一性,含有组蛋白所没有的色氨酸。非组蛋白的功能是DNA复制、RNA转录活动的调控因子。
2.染色体的结构
核体→螺线管→超螺线管→染色单体。从舒展的DNA双螺旋经四级折叠,压缩到最短的中期时,DNA分子缩短约5000~10000倍。
二、DNA是主要的遗传物质
l.噬菌体侵染细菌实验证实DNA是遗传物质
实验步骤如下:
2.肺炎双球菌的转化实验证实DNA是遗传物质
3.烟草花叶病毒(CMV)的重建说明CMV是不具DNA的病毒,RNA是遗传物质
三、DNA的结构和功能
1.DNA的结构
DNA是四种脱氧核苷酸的多聚体,见下图:
DNA的一级结构
DNA的主干由磷酸和脱氧核糖交互组成,磷酸和糖由3’、5’一磷酸二酯键联结在一起。碱基接在每一脱氧核糖的1’碳上
其结构要点如下:
(1)两条DNA链反向平行,一条走向是5’→3’,另一条走向是3’→5’,两条互补链相互缠绕,形成双螺旋状。
(2)碱基配对不是随机的。腺嘌呤(A)通过两个氢键与胸腺嘧啶(T)配对,鸟嘌呤(G)通过三个氢键与胞嘧啶(C)配对(见右图)。GC对丰富的DNA比AT对丰富的DNA更为稳定。
(3)DNA的双螺旋结构中,碱基顺序没有限制性,但是碱基对的顺序却为一种DNA分子提供了它性质上的特异性。
(4)双链DNA具有不同的构型,其中3种具有生物学上重要性。
①B—DNA:右旋,正常生理状态下的常见形式。②A-DNA:右旋,脱水状态下的常见形式。③Z—DNA:左旋,这种结构可能与真核生物中基因活性有关。
2.DNA的功能
(1)DNA的复制 凡有增殖能力的细胞,DNA复制是在间期细胞核的S期完成的。DNA的复制为半保留复制,DNA复制是从复制子起点开始的。DNA复制时,由于 DNA合成的方向是 5’→3’,所以一条长链是连续合成,另一条为不连续合成,先合成冈崎片段,去引物质再由DNA连接酶连成一条长链。总的来看,DNA是半不连续复制。复制从复制子起点开始,沿两个方向进行,当两个复制手的复制叉相接时,即相连在一起,当许多复制子的复制又相连时,两条新合成的链同各自的模板链相连形成两个相同的DNA分子。
高等生物的染色体是多复制子,原核生物则是单复制子。另外,噬菌体和质粒的环状DNA大都是随复制又同时向两侧移动方式复制。
(2)基因的表达 包括转录和翻译两个过程,在原核生物中这两个过程同时进行,在真核生物中是在不同时间、不同地点进行的。
①转录 转录是以DNA分子的一条链为模板,合成RNA的过程,合成方向也为5’→3’,转录不是沿DNA分子全长进行,是以包括一个成多个基因区段为单位进行合成。
原核细胞tRNA、mRNA、rRNA由一种RNA酶催化合成。而真核细胞具有三种聚合酶Ⅰ、Ⅱ、Ⅲ,其中Ⅰ催化rRNA的合成,Ⅱ催化mRNA合成,Ⅲ催化tRNA的合成。
合成出的m RNA前体需经过戴帽、加尾、甲基化和剪接等加工程序,最后才成为成熟的mRNA。
②翻译它是以m RNA分子为模板,按5’→3’的方向在核糖体上合成蛋白质的过程。蛋白质合成是从N→C端。遗传密码在mRNA上,每三个相邻的碱基形成一个密码子,方向为5’→3’,四种碱基可组合形成64种密码,其中有两种起始密码,三种终止密码,密码子的特点是不重叠性、无标点符号、简并性、终止密码和起始密码、通用性。
反密码子是t RNA反密码环中的三个相邻碱基,阅读方向为3’→5’。然而,反密码子5’端的一个碱基并不一定与密码于3’端的一个碱基互补(摆动学说),因此,t RNA的反密码子按一定规则与m RNA密码子互补配对,从而把某密码子转译为相同或不同的氨基酸。
氨基酸在酶的催化下通过酯键连在t RNA3’末端的CCA中的A残基上。(其C’C’A是酶的作用加上去的)
四、基因的概念和结构
1.基因的概念
基因一词是1909年约翰逊提出的代替“遗传因子”的词。基因是有遗传效应的DNA分子片段,是控制性状的遗传物质的功能单位。遗传效应是指基因具有复制、转录、翻译、重组和突变以及调控等功能。
2.基因的结构。
在原核生物中,DNA分子中约1000个碱基对相当于一个基因,这些基因连续编码。真核生物中的情况复杂的多。如哺乳动物的基因长度平均约为5000~8000个碱基对,然而,高等真核生物的结构基因多为断裂基因。一个断裂基因含有几个编码顺序,叫外显子,被一个个不编码的间隔顺序隔开,这些间隔顺序叫内含子。不同的结构基因结构复杂程度不同,每一个断裂基因在其第一个和第末个外显子的外侧,都有一非编码区,并连接着一些调控顺序。基因种类如下:
①编码蛋白质的基因 包括结构基因和调节基因。
②没有转译产物的基因 如rRNA基因和tRNA基因。
③不能转录的DNA片段 如操纵基因。