导航:首页 > 动物世界 > 哪些动物的心脏中有骨骼

哪些动物的心脏中有骨骼

发布时间:2022-12-30 04:41:51

1. 动物的骨骼系统有哪些构造

动物的骨骼系统:人和脊椎动物器官系统之一。包括骨和软骨两部分,借韧带连接,构成骨骼系统。按其所在部位,分中轴骨和附肢骨两部分。前者包括颅(头)骨和躯干骨;后者包括肩带、腰带和四肢骨。骨骼系统有支持躯体,保护内脏器官,供肌肉附着,作运动的杠杆等作用。骨是钙和磷的储存场所。骨髓腔在成体动物的身体中还能制造血细胞。

肌肉系统是一个通过其本身能收缩的特性使动物机体进行各种动作的系统。脊椎动物的肌肉系统大体可分为体肌和脏肌两类。体肌是由横纹肌组成的具有一定形态的肌肉块,分布于皮肤下层躯干部的一定位置,附着在骨骼上,受运动神经的支配。脏肌是平滑肌,形成内脏器官的肌肉部分,受植物性神经的支配,不能随意运动。心脏的肌肉,虽在组织学上与一般的平滑肌不同,但因心脏属于内脏,所以心肌也可列入脏肌的范畴。

2. 怎样区分动物有无脊椎

1、无脊椎动物的神经系统呈索状,位于消化管的腹面;而脊椎动物为管状,位于消化管的背面。
2、无脊椎动物的心脏位于消化管的背面;脊椎动物的位于消化管的腹面。
3、无脊椎动物无骨骼或仅有外骨骼,无真正的内骨骼和脊椎骨;脊椎动物有内骨骼和脊椎骨。

3. 有内骨骼的动物有哪些

蜜蜂,蝴蝶,蜻蜓、苍蝇````````````

4. 兔、鱼、龟的骨骼结构中分别有什么骨骼各个骨骼各有什么作用

循环系统是生物体的体液(包括血液、淋巴和组织液)及其借以循环流动的管道组成的系统。从动物形成心脏以后循环系统分为心脏和血管两大部分,叫做心血管系统。循环系统是生物体内的运输系统,它将消化道吸收的营养物质和由鳃或肺吸进的氧输送到各组织器官并将各组织器宫的代谢产物通过同样的途径输入血液,经肺、肾排出。它还输送热量到身体各部以保持体温,输送激素到靶器官以调节其功能。高等动物的循环系统还有附加的功能:如机体的保护作用;将血液运送到受伤或感染部位,包括白细胞和免疫蛋白(抗体)、凝血物质(在受伤部位形成纤维蛋白网);将身体储存的脂肪和糖运到用场等。无脊椎动物的循环系统多为开放型循环(参见彩图插页第39页);血液由“心”经血管流入组织间隙形成的血窦直接或经静脉回心。血窦中血液与组织液、淋巴液相混,无管道将它们隔离,因此开放型循环不存在由微动脉、毛细血管、微静脉形成的微循环,有些连静脉也没有,血液由血窦经心门直接入心。这是低级形式的循环系统。其特点是血管壁弹性小,不能支持较高的血压,因此它们的血压很低,血液重新分配的调节和血流速度很慢。少数无脊椎动物如环节动物的蚯蚓等和部分软体动物如章鱼等开始有封闭型循环。血管系统开始形成了微循环,血流经微循环、静脉回心,由于心血管系统形成了完整的管道,而且血管壁弹性大,能支持较高的血压,因此血压较高,血液重新分配的调节和血流速度也较快,是高级形式的循环系统。除极少数例外(如盲鳗等),脊椎动物绝大多数都有封闭式循环。脊椎动物从爬行动物、鸟类到哺乳动物的心脏都有两心房和两心室。这种心脏实际上形成两个泵。左心室泵血到动脉,再到毛细血管与组织细胞进行物质交换,送去养分带走代谢废物经静脉回右心房,叫做体循环,因为线路较长,也叫大循环。血液经右心房、右心室,肺动脉到肺进行气体交换,放出二氧化碳,带走氧,然后经肺静脉将含氧丰富的新鲜血液运回左心房,叫做肺循环,因路线较短,也叫小循环。部分组织液进入另一套封闭的管道系统,形成淋巴液,经小淋巴管逐步汇成大淋巴管,经左侧的胸导管和右侧的大淋巴管分别进入左、右锁骨下静脉,形成淋巴循环(参见彩图插页第39页)。血液循环受神经体液因素的调节,这些因素在中枢神经高级部位的整合下能使心血管系统保持适当的血压和血流,这是确保各组织器官正常物质交换,维持正常功能活动的先决条件。血液只有在全身不停地循环流动才能完成其多种功能,血液循环的停止是死亡的前兆,具有最重要的生理意义。到达各器宫的各有其特点的血液循环叫做特殊区域循环或器官循环。这种循环在高等动物中以脑循环和冠状循环最为重要,因为二者的短时阻断都将导致严重的后果乃至死亡。冠脉阻断后几乎立即使心搏停止,脑循环阻断后脑细胞4~6分钟后死亡。

血液循环类型的进化

各门类动物的循环系统的结构和功能可扼要归纳为表1。单细胞生物和多细胞生物包括植物细胞都可以看到最简单形式的循环——细胞质流动,即原生质流动。

鸟和哺乳动物心脏的分隔和肺循环与体循环的分离是完全的。这样会产生一个重要结果:肺循环的血压大大低于体循环的血压。在人肺动脉压不过20~30毫米汞柱,约为体动脉压的1/5。这样大的差别如果二者的分离不完全是不可能的。完全分离以后,动静脉血不再相混,大动脉中全是含氧多的鲜血,结果各种组织可得更多的氧,使代谢水平提高,适应环境的能力大为增强。鸟和哺乳动物大多为恒温动物,这与循环系统的完善有关。

心脏的结构和功能

血管系统的结构和功能

血管壁具有丰富的弹性纤维和平滑肌,这使血管能被动的扩展和主动的收缩。动脉、静脉和毛细血管各有其结构特征。动脉与相应的静脉比有较厚的壁,大动脉的弹性纤维和平滑肌成分较多,随着动脉分枝逐渐变细,壁中平滑肌所占的比例越来越大。毛细血管是血管系统中最小的血管,由一层细胞构成。血液与组织间的物质交换都经过毛细血管进行。静脉管壁比相应动脉的?3��秆�芎臀⒕猜觯ㄐ【猜觯┩猓�渌��⒕猜霭�ㄎ⒍�觯ㄐ《�觯┒加衅交�〔悖��癖〔煌�K�醒�艿哪谀ざ加梢徊隳谄は赴�钩伞V心せ蛑胁阌善交�〉�韵宋�桶紫宋�钩桑�饽ぃㄍ獠悖┯山岬拮橹�钩伞2溉槎�镆怨肺���溲�芟低车囊恍┎舛可�?,由表2可见大动脉管随分枝的增多,血管的直径变小,血管数目增多,总横断面积与血管数相应显着增大。狗的肠系膜毛细血管的总横断面积约为主动脉的800倍。从小静脉开始,静脉管逐步汇合成较粗而数目减少,总横断面积也相应减小,直到腔静脉,它的横断面积最小,但稍大于主动脉。静脉系统的血量(680毫升)比动脉系统的血量(190毫升)约大3.6倍。由于静脉血系统容量最大,所以也叫容量血管。由于小动脉、微动脉的紧张性变化在外周阻力变化中作用最大,所以也称它们为阻力血管。

循环血与存储血人的全身血量约占体重的6~8%。全身血液并非都在心血管系统中流动而有一部分流动极慢甚至停滞不动的血存储在脾、肝、皮肤、肺等部。流动的血叫循环血,不流动或流动极慢的血叫存储血。那些存储血液的器官叫做储血库或简称血库。储血库可以调节循环血量,其中以脾的作用最大。静息时脾脏松弛,与循环血液完全隔离,可以储存全身总血量的1/6左右。其中血细胞比容较大,血细胞数约可达全身红细胞总数的1/3。当剧烈运动、大出血、窒息或血中缺氧时,在神经体液因素调节下,脾脏收缩,放出大量含血细胞很多的血液(比循环血多40%)到心血管中增加循环血量以应急需。但是,无论是循环血,还是存储血都受到血量变动的影响,血量和血细胞的过多都可引起人体的不良反应,甚至病变。

脾、肝、肺和皮肤的储血功能刺激内脏神经能使脾脏迅速强烈地收缩,容积显着减?T诩跹狗瓷渲衅⑷莼�黾樱�友狗瓷渲衅⑷莼�跣 I錾舷偎匾�鹌⒃嗟氖账酢F⑿×罕绕交�《陨錾舷偎馗��舾校�挚墒さ龋?929)。在脾脏非条件反射基础之上可以建立脾脏收缩的条件反射,从而阐明了大脑皮层对脾脏活动的调节作用。肝和肺也有储血库功能,虽然它们与循环血流并未完全隔离,但因流动很慢可以把它们看作储血库。肝静脉收缩在一定时间内使流入血量大于流出血量,所存的血液分布在肝内舒张的血管之中,根据肺血管舒张的程度象肝一样,肺也可以存储或多或少的血液。

皮肤乳头下血管丛舒张时能存储大量血液(可达1升)。此处血流很慢甚至停滞不动。皮肤很多部位的动静脉吻合舒张时使大量存血暂时与循环血流隔离。站立时循环血量减少,可能是因为有相当多的血流入下肢皮肤血管丛所致。

血管运动的神经调节

血管的收缩和舒张叫做血管运动,支配血管舒缩的神经叫血管运动神经。使血管收缩的神经叫血管收缩神经,简称缩血管神经,使血管舒张的神经叫血管舒张神经,简称舒血管神经。动静脉血管都有神经分布,其中以小动脉、微动脉和动静脉吻合支的神经分布最密,全部血管都有缩血管神经纤维,部分血管兼有收缩和舒张两种神经纤维。

缩血管神经 内脏器官和皮肤血管的缩血管神经作用最大,当刺激腹腔内脏主要缩血管神经——大内脏神经时,引起内脏血管床的广泛收缩导致体循环血压显着升高。缩血管神经属交感神经系统,由肾上腺素能纤维(末梢释放去甲肾上腺素的纤维)组成。缩血管神经对小动脉的调节有重要意义,因为它能保持动脉血压的恒定从而保证各器官组织充足的血液供应。缩血管神经能使血管平滑肌经常保持一定紧张状态。这是因为它有不断的神经冲动发放。各器官血管都有缩血管纤维,但其紧张性冲动的发放频率各有不同。内脏血管的交感纤维的紧张性发放最高;皮肤、骨骼肌血管的有中等度的紧张性发放,脑部缩血管纤维的紧张性发放最低,所以脑血管较少受到缩血管神经的影响而经常处于舒张状态。

舒血管神经 德国生理学家高兹发现在慢性实验中切断坐骨神经数日后刺激其末梢可以看到后肢血管的明显舒张反应。塔尔哈诺夫切断坐骨神经后立即刺激其末梢端得到的却是缩血管反应。所以出现不同反应是因为坐骨神经中兼有收缩和舒张纤维,受刺激后,一般舒张纤维的作用被压抑而只表现收缩反应。但缩血管纤维变性较快,切断后3~4天就失去兴奋的能力,而舒血管纤维切断6~10天仍能兴奋,所以在慢性实验中3~4天后刺激这种混合神经会出现舒张反应。一般传出神经都含有血管舒张和收缩两种纤维。舒血管神经的来源性质复杂,共有以下3种:

副交感舒血管神经 是主要的舒血管神经。其中面神经(Ⅶ)和吞咽神经(Ⅸ)的舒张纤维支配唾液腺、泪腺、舌及口腔和咽部粘膜等区域的血管;盆神经的副交感舒血管支配直肠、膀胱和外生殖器等部的血管,使之能使血管舒张。舒血管纤维末梢释放的递质是乙酰胆碱,叫做胆碱能纤维。C.贝尔纳1854年认为鼓索神经是舒血管神经曾被肯定了近100年。以后德国生理学家R.P.H.海登海因1872年最先对此提出质疑,根据鼓索神经引起下颌下腺血管舒张反应不能用阿托品阻断。1941年英国生理学家J.巴克罗夫特提出下颌下腺血管的这种舒张反应可能由腺细胞代谢产物所引起。这种看法由S.M.希尔顿和G.P.刘易斯在1955年所证实;他们发现刺激鼓索神经能使颌下腺细胞分泌赖氨酰缓激肽,这种多肽能迅速变成舒缓激肽,二者都是强血管舒张剂。从而否定了鼓索神经是舒血管神经的论断。

交感舒血管神经 支配骨骼肌血管的交感神经干中除缩血管纤维外,还有舒血管纤维。这种纤维的来源虽是交感神经,但却能使血管舒张,其递质也是乙酰胆碱,所以叫做胆碱能交感舒血管纤维。

背根逆向传导的舒血管作用 切断脊神经背根,刺激其外周端,冲动可以逆向传导到外周引起所支配皮肤血管的舒张反应。这种现象可能是反常的,但1901年英国生理学家贝利斯根据大量材料认为背根中传入神经元的轴突可分两支,一支到感受器,另一支到血管壁,受刺激后使血管舒张。这种分支还可以到小动脉及前毛细血管壁,引起它们的舒张反应,这种逆向传导引起效应器的反应叫做轴突反射,刺激小块皮肤可引起远离刺激部位的皮肤血管舒张,此反应在切断一切到该区的神经仍可发生。这是轴突反射存在的重要证据。但在神经切断数日后,反应消失,因神经纤维已经变性。

血管运动中枢

中枢神经系统中调节血管运动的神经细胞群叫做血管运动中枢。它的高级中枢在大脑皮层,低级中枢在皮层下从下丘脑直到脊髓。血管运动中枢与心搏调节中枢的活动关系非常密切,在心血管系统反射中两者常同时出现。心搏加速反射常伴有血管收缩反射;心搏减慢的反射多伴有血管舒张反射。这是因为这些中枢在脑和脊髓中相距很近。

脊髓血管运动中枢 血管运动的低级中枢,位于脊髓的胸1至腰2节段之间。横断脊髓的实验发现横断部位越高,血压下降越多。胸部脊髓横断处的刺激引起血压上升,颈部脊髓切断后,最初血压下降,不久又可上升,全毁脊髓则血压下降,不能恢复。脊髓缩血管中枢由胸腰部心交感和缩血管神经元组成,能整合各路神经冲动,具有紧张性活动可使脊髓动物(只保留脊髓的动物)保持较高的血压。缩血管纤维起源于脊髓胸腰各段。在完整机体中脊髓缩血管中枢的活动受延髓等高级中枢的控制。

延髓血管运动中枢 用细小的针形电极刺激狗猫等动物延髓第四脑室底部左右下凹区,可使动脉血压升高,叫延髓加压区,即缩血管中枢。此区还能引起心搏加速加强和其他交感性反应,是延髓水平的交感中枢。延髓加压区包括延髓前2/3的网状结构背部外侧的大部。其下行纤维到达脊髓缩血管神经元,破坏延髓神经元或切断其下行纤维则血压下降。脊髓缩血管神经元的紧张性活动由延髓网状结构中神经元群的紧张性活动引起。一些主要血管运动反射也多通过这些神经元群来实现。从1936年起到1938年止以林可胜为首的中国生理学家陈梅伯、王世溶、易见龙等对延髓血管运动中枢进行了系统的研究,并连续在中国生理学杂志发表了一系列有关加压中枢(交感神经中枢)和减压中枢(交感抑制中枢)的高质量论文。证明延髓第四脑室侧在声纹和下凹之间前庭核附近有交感神经中枢,全面研究了加压区对内脏功能的影响,发现刺激加压区可使心、肠、肾、子宫和腿部的血管收缩,并能引起许多器官的交感性反应。此外还对交感神经中枢的上、下行束道做了定位研究。论证了延髓交感神经抑制中枢(减压区)的存在。林可胜和吕运明对各纲脊椎动物包括:鱼、蟾蜍、龟、鸡、山羊、豚鼠、猪、家兔、猫、狗、刺猬、猴的延髓交感中枢定位进行了研究。发现这些动物的加压中枢都与前庭区有密切关系,低等脊髓动物的加压区在前庭区的头侧,哺乳动物的加压区在前庭区的尾侧。动物越低等加压区对刺激的反应的灵敏度越低,加压作用越不明显,作者认为这是因为它们的交感神经不够发达所致。电刺激延髓第四脑室闩部附近引起降压反应,因此叫做减压区。包括延髓后1/3网状结构腹侧的广大区域。此区的减压作用,不是舒血管神经的兴奋的结果,而由缩血管中枢活动的抑制所引起。血中二氧化碳过多,加强血管收缩中枢兴奋,使血管收缩,血压升高;二氧化碳过少,降低收缩中枢的兴奋,血管舒张,血压下降。延髓与脊髓血管运动中枢都能对血中二氧化碳过多产生加压反射,但延髓中枢比脊髓中枢更为敏感。各种传入冲动都能影响延髓缩血管中枢的活动,特别是颈动脉窦主动脉弓减压反射影响最大,因而在血压调节机制中最为重要。

延髓以上的血管运动中枢 中脑和前脑都有血管运动中枢。狗脑的S状回受刺激时也能引起减压反应。刺激中脑腹部可以引起典型的垂体加压反应。在红核水平切断脑干使血压发生显着变化(常与呼吸变化有关)。刺激小脑也能引起血压变化,这与小脑对交感神经的影响有关。间脑的下丘脑是整个植物性神经系统的高级中枢,能引起血压的显着变化。去大脑皮层而保留间脑的狗出现非常复杂的心血管反射,常使血压升高和心搏加速。大脑皮层发育不全的新生儿,间脑在循环调节中起主导作用。发育完善的大脑皮层对血液循环具有最强的调节整合作用,大脑皮层通过条件反射的建立控制着心血管系统的活动,使血液循环能迅速适应各种复杂的生存条件。

血管运动反射

心血管系统中很多部位分布着压力感受器。当受到机械刺激时都能引起血管的反射性运动导致动脉血压的改变,其中以颈动脉窦和主动脉弓区最为敏感,二区受刺激之后可以引起减压反射。较小的血管乃至一般组织也有压力感受器的分布,也能反射性地引起血压下降(见血压),但反应较弱。

罗文氏反射 1866年S.罗文发现刺激一个肢体或某一器官的传入神经时,该肢体或器官的血管舒张而其他部位的血管收缩,同时动脉血压上升,叫做罗文氏反射。例如刺激兔的足背神经引起该神经支配的下肢血管舒张,容积加大,身体其他部分的血管则起收缩反应,导致加压反射,这对血液向活动较多的器官集中,对血液的重新分配有明显作用。

迷走加压反射 腔静脉内血压下降可以刺激迷走神经加压纤维末梢,引起血管床的广泛收缩导致的反射性血压升高。这一反射多见于大失血,此时静脉压降低,如迷走神经完整无损,由此反射的作用动脉血压可不下降或下降不多。切断迷走神经后血压下降较多。用可卡因涂在右心房上的效果与切断迷走神经相同,都可抑制迷走加压反射,导致失血时更大幅度的血压下降。

高级中枢对血管运动的调节

小脑、中脑、下丘脑对血管运动的调节 小脑、中脑受刺激时都能引起血管运动反应,刺激小脑前叶皮层可抑制血管运动中枢,出现加压或减压反射。下丘脑是更重要的植物性神经中枢。电刺激动物下丘脑后侧部引起肢体血管收缩;热刺激下丘脑前部引起肢体皮肤血管的舒张。下丘脑是体温调节中枢,它对血管紧张性收缩的影响是体温调节机制中的一个重要部分。热刺激下丘脑使皮肤血管舒张,有助于体温过高时的散热,在保持体温恒定机制中有重要作用。大脑皮层是调节整合血管运动的最高级中枢,所谓整合是把不同生理反应综合组成互相协调统一的有效生理过程。在皮层功能减弱乃至消失时,下丘脑是各种植物性功能的整合中枢,正常情况下它在大脑皮层的控制下起作用,只有大脑皮层才能使机体各种功能包括心血管运动与内外环境高度统一起来完成最复杂的调节整合。电刺激大脑皮层运动区和杏仁核的有些部位引起加压反应,心搏加速;刺激皮层额叶眶部、颞叶前部、梨状区和杏仁核的其他部位引起减反应;刺激扣带回、眶回和脑岛等区都能引起明显的血管反应。

大脑皮层对血管运动的调节 在人和动物清醒状态用容积描记法记录肢体血管运动可以揭示大脑皮层的有力控制作用,齐托维奇于1918年最先用笛声与皮肤冷刺激结合建成了血管收缩条件反射,单用笛声引起了与冷刺激同样的缩血管反应。以后A.A.罗戈夫在人,A.T.普绍尼克在狗身上分别建立了血管收缩和舒张的条件反射,发现巩固的血管条件反射的反射量不但不小于有关的非条件反射量,反而常大于后者,甚至在人手臂容积描记实验中,当血管条件反射与强刺激引起的非条件反射性质相反时可以压倒非条件反射;如63℃的皮肤痛刺激引起明显的缩血管反应,光与43℃的皮肤热刺激结合形成巩固的血管舒张条件反射后,条件刺激光与63℃皮肤痛刺激相遇时出现的反应是明显的血管舒张, 63℃皮肤痛刺激的缩血管反应可以完全消失。

在非常巩固的血管条件反射基础上可以建立二级、三级乃至更高级的血管舒张条件反射。可以出现第一信号系统(现实的刺激)向第二信号系统(抽象的语词)的选择性泛化;如与现实的条件刺激有关的语词可以引起相应的阳性血管条件反射和明显的分化相,甚至还伴有相应的皮温感觉。美国学者腊什麦耶等在清醒狗的平台踏车电刺激实验中看到在接通电路前就出现了与刺激时引起狗运动的同样的心血管反应,如心电图的变化等,从电生理学角度证实狗同样有条件反射性心血管反应。

血管运动的体液调节

动物体内有些组织器官释放到血液中的化学物质对血管系统的功能状态有调节作用。其中有些是在神经控制下与血管反射协同,成为整个循环系统调节的一个环节而起作用。另外有些体液因素不受神经的控制,是局部血流调节的重要因素。归纳起来可分为三类物质:①由内分泌腺分泌的激素,如肾上腺素和去甲肾上腺素;②组织在某些特殊活动时释放的一些能影响血管运动的化学物质,如缓激肽、肾素、五羟色胺、组织胺等;③组织的一般代谢产物,如二氧化碳、乳酸、腺苷三磷酸的分解产物腺嘌呤酸等。第一类受神经控制。第二、三类与神经关系较少或没有关系(表3)。

肾上腺素和去甲肾上腺素 二者都由肾上腺髓质分泌,作用与交感神经兴奋时相似。两种激素都能提高心脏的代谢率;使心搏加速,加强,心输出量继而增加。肾上腺素对心脏的作用较强。去甲肾上腺素对血管的作用较强。两种激素对心脏和血管的综合作用是使心搏率、心输出量和体循环血压都增加。

乙酰胆碱 能使小血管舒张增加局部组织的血流量。由于容易被胆碱酯酶破坏,所以在正常情况下,血中不可能有大量乙酰胆碱出现。注射少量乙酰胆碱有短暂的降压作用。其生理意义在于它是胆碱能舒血管纤维的递质,迷走神经和其他胆碱能舒血管纤维兴奋时,释放乙酰胆碱引起局部血管的舒张和心搏抑制。

垂体加压素 脑下垂体后叶分泌的加压素引起小血管收缩,包括冠状血管。作用时间较长,垂体后叶的内分泌功能受神经控制。刺激神经中枢端使分泌增多,痛刺激引起的加压反射中垂体后叶加压素的分泌也起—定作用。

肾素和血管紧张素 部分阻断肾动脉使肾血供应不足,会使动物产生肾性高血压,产生的原因是因肾供血不足时血钠降低刺激肾小球旁细胞释放一种叫做肾素的酶(血管紧张肽原酶),此酶入血后,能将血浆中血管紧张素原(在α2球蛋白中)水解为一种十肽,叫做血管紧张素Ⅰ。当它经过肺循环时,被其中的转换酶脱去两个氨基酸,成为血管紧张素Ⅱ。在氨基肽酶作用下血管紧张素Ⅱ水解成一种七肽——血管紧张素Ⅲ。血管紧张素Ⅱ、Ⅲ都有很高的生物活性,特别是血管紧张素Ⅱ是已发现的最强的缩血管物,血管紧张素Ⅲ主要是刺激肾上腺皮质分泌醛固酮,从而加强肾小管对于钠及水的重吸收,Ⅱ和Ⅲ都有增加血压的效应。

局部性体液调节因素 多是组织的代谢产物如二氧化碳、乳酸、氢离子、钾离子和腺苷三磷酸的分解产物如腺嘌呤酸等,一般都有局部舒血管作用,有助于增加活动器官的血液供应。组织胺是组氨酸的脱羧产物,许多组织,特别是皮肤、肺和肠粘膜的肥大细胞含量较多,在组织发炎、受伤和过敏反应时放出,使平滑肌收缩,但使毛细血管强烈舒张以至造成损伤,导致小血管通透性增加,血浆大量渗出,从而减少循环血量,降低动脉血压,这些反应都对循环有破坏作用。消化道、脑组织、血小板等有色氨酸的衍生物叫五羟色胺(5-HT),一般有缩血管作用,但小量则使肌肉血管舒张。前列腺素广泛存在于各种组织中,在生理和病理情况下都能释放,先到组织间液,后到循环血液,它的成分复杂,有些成分有局部缩血管的作用,但前列腺素主要成分引起血管舒张。

5. 所有的动物都有心脏吗

不是所有的动物都有心脏。

比如:腔肠动物(常见的水母等)、软体动物(常见的额乌贼等)等动物都是没有心脏的动物。

腔肠动物主要有体壁、外骨骼、消化系统、神经系统和呼吸系统等组成,是没有心脏的。

软体动物主要有头部和足部,其内部也没有“心脏”这种器官。


(5)哪些动物的心脏中有骨骼扩展阅读:

腔肠动物的主要特征:

1、身体呈辐射对称,有的为两辐射对称;

2、两胚层和原始消化腔;

3、细胞出现原始的组织分化;

4、网状神经系统(扩散或散漫神经系统)。

6. 生物种类有哪些

动物分类有这些
在动物界中,根据动物身体中有没有脊椎而分成为脊椎动物和无脊椎动物两大主要门类。脊椎动物按照从低等到高等分为鱼类、两栖类、爬行类、鸟类、哺乳类。无脊椎动物分为原生动物、腔肠动物、
环节动物、软体动物、节肢动物。
在动物分类学上,为了将数量众多的物种进行鉴定、研究,便建立了一个科学的系统,设立了很多的等级,用以表示各种动物间类似的程度和亲缘关系的远近。物种是动物分类的基本单位,将若干相近似的物种归并在一起,称为属,又将一些相近似的属归并在一起,称为科,再将若干科并为目,若干目并为纲,若干纲并为门,门是动物界最高的分类等级,这样从上至下则为界、门、纲、目、科、属、种,形成了一个科学的动物分类系统。有时为了更精确地表达动物间的分类地位和相似的程度,或因各等级间范围过大,不能完全包括其特征关系或系统关系,有的学者将原有的等级再进一步细分,如在某一等级之前加上“总”或在某一等级之后加上“亚”这一级。即为门、亚门、总纲、纲、亚纲、总目、目、亚目、总科、科、亚科、属、亚属、种、亚种等。
“门”是分类的最大单元。目前动物界一共分为30多门,其中主要的有下列几门:原生动物门、多孔动物门、腔肠动物门、扁形动物门、线虫动物门、环节动物门、软体动物门、节肢动物门、棘皮动物门、脊索动物门。动物类群之间相似程度越大,表明它们的亲缘关系越近;相似程度越小,表明它们的亲缘关系越远。动物分类体系就是力图表明各类动物在进化历程中这种相互之间的自然关系。
植物分类有哪些
植物按照从低等到高等的顺序可以分为藻类、苔藓类、蕨类和种子植物。种子植物按照果实有无种皮包被分为裸子植物和被子植物。被子植物按照子叶的数目分为单子叶和双子叶植物。同样,把植物界各个分类等级按照其高低和从属亲缘关系顺序地排列起来,即将整个植物界的各种类别按其大同之点归为若干门,各门中就其不同点分别设若干纲,在纲下分目,目下分科,科再分属,属下分种。植物界共分17个门,即裸藻门、金藻门、甲藻门、绿藻门、轮藻门、褐藻门、红藻门、蓝藻门、地衣门、细菌门、真菌门、粘菌门、卵菌门、苔藓植物门、蕨类植物门、裸子植物门、被子植物门。
地球上生物种类及分布总况
地球上的生物种类繁多,形态各异。根据生物学家统计,生物圈中已被记录在册的生物有250万种,其中动物约200万种,植物约34万种,微生物约3.7万种。因受地理位置、气候、地形以及土壤等因素的影响,地球上生物的分布也是多种多样的。首先可以将地球生物分为水生生物和陆生生物,其中陆生生物又可以根据纬度地带性、经度地带性和垂直地带性而分为热带雨林、常绿阔叶林、落叶阔叶林和北方针叶林、稀树草原、草原、荒漠以及苔原。

7. 动物有哪些器官

1、软骨

软骨内的基质呈凝胶状态,具有较大韧性。软骨是以支持作用为主的结缔组织。软骨内不含血管和淋巴管,营养物由软骨膜内的血管中渗透到细胞间质中,再营养骨细胞。

2、骨骼肌

骨骼肌(skeletal muscle)又称横纹肌,附着在骨骼上的肌肉,肌肉中的一种。

3、心脏

心脏是脊椎动物身体中最重要的器官之一,主要功能是为血液流动提供动力,把血液运行至身体各个部分。人类的心脏位于胸腔中部偏左下方,体积约相当于一个拳头大小,重量约250克。女性的心脏通常要比男性的体积小且重量轻。人的心脏外形像桃子,位于横膈之上,两肺间而偏左。

4、血管

血管是指血液流过的一系列管道。除角膜、毛发、指(趾)甲、牙质及上皮等地方外,血管遍布人体全身。血管按构造功能不同,分为动脉、静脉和毛细血管三种。

5、肾

肾是脊椎动物的一种器官,属于泌尿系统的一部分,负责过滤血液中的杂质、维持体液和电解质的平衡,最后产生尿液经尿道排出体外;同时也具备内分泌的功能以调节血压。

8. 海洋动物的种类划分主要有哪些

按生活方式划分海洋动物主要有海洋浮游动物、海洋游泳动物和海洋底栖动物三个生态类型。

按分类系统划分海洋动物共有几十个门类,可分为海洋无脊椎动物和海洋脊椎动物两大类,或分为海洋无脊椎动物、海洋原索动物和海洋脊椎动物三大类。

海洋无脊椎动物海洋无脊椎动物是背侧没有脊柱的动物,其种类数占动物总种类数的95%。无脊椎动物是动物的原始形式,是动物界中除原生动物界和脊椎动物亚门以外全部门类的通称。BBC主持人大卫·阿登堡爵士(Sir David Attenborough)所言:“如果一夜之间所有的脊椎动物从地球上消失了,世界仍会安然无恙,但如果消失的是无脊椎动物,整个陆地生态系统就会崩溃。”一切无脊柱的动物占现存动物的90%以上。它分布于世界各地,在体形上,小至原生动物,大至庞然巨物的鱿鱼。无脊椎动物一般身体柔软,无坚硬的能附着肌肉的内骨骼,但常有坚硬的外骨骼(如大部分软体动物、甲壳动物及昆虫),用以附着肌肉及保护身体。除了没有脊椎这一点外,无脊椎动物内部并没有多少共同之处。无脊椎动物这个分类学名词以前用于与脊椎动物(该词至今仍为一个亚门的名称)相对,但在现代分类法上已经不用。

分类情况 分类依据(1)无脊椎动物的神经系统呈索状,位于消化管的腹面;而脊椎动物为管状,位于消化管的背面。

(2)无脊椎动物的心脏位于消化管的背面;脊椎动物的位于消化管的腹面。

(3)无脊椎动物无骨骼或仅有外骨骼,无真正的内骨骼和脊椎骨;脊椎动物有内骨骼和脊椎骨。

1822年J.B.de拉马克将动物界分为脊椎动物和无脊椎动物两大类。1877年德国学者E.海克尔将柱头虫、海鞘和文昌鱼等动物与脊椎动物合称脊索动物门,与无脊椎动物的各门并列,使脊椎动物在分类系统中降为脊索动物门中的一个亚门,与半索动物亚门(柱头虫)、尾索动物亚门(海鞘)和头索动物亚门(文昌鱼)并列。70年代以来半索动物已独立成门,由于后3个类群属于无脊椎动物范畴,这样,无脊椎动物实际上包括了除脊椎动物亚门以外所有的动物门类,是动物学中的一个一般名称,而不是正式的分类阶元。

(2)种类划分无脊椎动物的种类非常庞杂,现存约100余万种(脊椎动物约5万种),已绝灭的种则更多。它包括的门数因动物学的发展而不断增加。由于对动物的各个方面研究得愈加详尽,人们对其彼此间亲缘关系的认识也愈加深入,因而各门的分类地位常有改动。

无脊椎动物中的门一般把动物界分为十门。

包括:原生动物门、多孔动物门、腔肠动物门、扁形动物门、线形动物门、环节动物门、软体动物门、节肢动物门和棘皮动物门。

脊索动物门有:尾索,头索,脊索和脊椎动物四个亚门。除脊椎动物亚门外,其它的便都是无脊椎动物。

形态特征无脊椎动物多数体小,但软体动物门头足纲大王乌贼属的动物体长可达18米,腕长11米,体重约2吨。无脊椎动物多数水生,大部分海产,如有孔虫、放射虫、钵水母、珊瑚虫、乌贼及棘皮动物等,部分种类生活于淡水,如水螅、一些螺类、蚌类及淡水虾蟹等。蜗牛、鼠妇等则生活于潮湿的陆地。而蜘蛛、多足类和昆虫则绝大多数是陆生动物。无脊椎动物大多自由生活。在水生的种类中,体小的营浮游生活;身体具外壳的或在水底爬行(如虾、蟹),或埋栖于水底泥沙中(如沙蚕蛤类),或固着在水中外物上(如藤壶、牡蛎等)。无脊椎动物也有不少寄生的种类,它们寄生于其他动物和植物体表或体内(如寄生原虫、吸虫、绦虫和棘头虫等)。有些种类如蚓蛔虫和猪蛔虫等会给人类带来危害。

运动系统运动系统包括身体支撑和前进两部分。

(1)骨骼无脊椎动物没有脊椎动物那一根背侧起支撑作用的脊柱和狭义的骨骼。广义的骨骼包括外骨骼(保护作用,不使水分蒸发),内骨骼和水骨骼三种。而无脊椎动物拥有的正是这三种骨骼。

外骨骼指的是甲壳等坚硬组织,如蜗牛的壳,螃蟹的外壳和昆虫的角质层都属于外骨骼。

内骨骼存在于脊椎动物,半脊椎动物,棘皮动物和多孔动物中,在内起支撑作用。多孔动物的内骨骼并不是中胚层起源的。棘皮动物的内骨骼是由CaCO3和蛋白质组成的,这些化学物品体按同一方向排列。

水骨骼是动物体内受微压的液体(无体腔动物的扁形动物也不例外)和与之拈拮的肌肉,加上表皮及其附属的角质层的总称。水骨骼是无脊椎动物的主要骨骼形式。除了上述的软体动物,棘皮动物和节肢动物外的其他无脊椎动物都拥有水骨骼。

(2)运动无脊椎动物的运动方式有多种:

①借助纤毛的摆动前进。

②没有刚毛,没有环形肌的线形动物通过两侧纵肌的交替收缩实现的蛇行。

③有刚毛有环形肌有纵肌的蚯蚓的蠕动。这是通过不同节段纵,环肌肉交替收缩实现的。

④在海底沉积物中,通过膨胀身体某节段实现固定,身体的另外部分收细前钻。

⑤有爪动物的爬行。

⑥昆虫的飞行(只是少数)。

排泄系统并不是所有的无脊椎动物都有排泄器官的。例如扁形动物,它们靠的是位于下表皮向内伸出的表皮突起的排泄细胞完成排泄的。而无脊椎动物常见的排泄器官则是原肾管和后肾管。

神经系统尤脊椎动物的神经系统没有脊椎动物的那么复杂多样。从最原始的神经细胞,到神经细胞集合成为神经节,到后来大脑的形成,其形式由弥散的神经网到有序的神经链,到中枢和梯状神经系统的出现,也经历了一个由简单到复杂的过程。

感觉器官由刺胞动物的感觉棍(有视觉和重力觉),经过扁形动物头部神经细胞群集形成的“眼”,到昆虫的复眼和头足动物,例如乌贼的眼(是由外胚层形成的),分辨率不断上升。这更有利于动物逃避敌害和捕食。

消化系统刺胞动物是桶形的,口和肛门是同一个开口。其消化系统被称为胃管系统,它和扁形动物分支的肠一样,行使消化和运输功能,因为刺胞动物没有循环系统。

内寄生的线形动物已经退化,它们靠头节吸取宿主小肠内的营养。

而大部分的真后生动物都有贯穿身体全长的消化管道以及与之配合的消化腺和循环系统,行细胞外消化。消化管道通常由口、咽、食道(有如蚯蚓者,它还有膨大的嗉囊)、(肌肉)胃、肠和肛门构成。而双壳纲动物甚至用鳃过滤食物。

循环系统无脊椎动物不一定有循环系统,例如上述的刺胞动物、扁形动物、缓步动物和线形动物。而有循环系统的动物,又有如软体动物的开放式循环系统(头足动物的循环系统有向闭合式发展的趋向)和环节动物的闭合循环系统。在昆虫和蜘蛛等动物身体里有的是血淋巴。

循环系统的任务是运输。它将呼吸系统里的氧气和消化系统的营养物质运输到身体的其他地方,而将代谢废物运输到排泄器官。

呼吸系统无脊椎动物和其他生物一样,需要氧化能源物质以获得能量,这个过程需要呼吸系统提供氧气。无脊椎动物最常见的呼吸器官是鳃。但昆虫的呼吸器官却是气管,它们开口于体表的可关闭的气门,往体内不断细分,不经过循环系统直接将氧气运输到细胞的线粒体旁边,是非常有效的一套呼吸系统。

生殖情况 无脊椎动物的繁殖形式多样。首先分为有性跟无性两种。有些动物,如刺胞动物和寄生虫线形动物,有世代交替现象。如果动物是雌雄同体,还会出现自体交配现象。

无性生殖常见的形式是出芽生殖,见于刺胞动物的无性世代。

有性生殖的特点是,生殖通过生殖细胞的结合完成。生殖过程可以是由一者单独完成,但更常见是两个个体通过各自提供不同的交配类型的生殖细胞去共同完成。前者见于猪肉绦虫,它后部性成熟的体节会受精于后一节体节。蚯蚓也会偶尔出现自身交配现象。

世代交替,以钵水母为例,水母会通过精卵融合的有性生殖方式生育出水螅。水螅然后经过无性生殖,即旁支出芽分裂,经过叠生体和蝶状幼体阶段再次成为水母。

发展历史地球上无脊椎动物的出现至少早于脊椎动物1亿年。大多数无脊椎动物化石见于古生代寒武纪,当时已有节肢动物的三叶虫及腕足动物。随后发展出古头足类及古棘皮动物的种类。到古生代末期,古老类型的生物大规模绝灭。中生代还存在软体动物的古老类型(如菊石),到末期即逐渐绝灭,软体动物现代属、种大量出现。到新生代演化成现代类型众多的无脊椎动物,而在古生代盛极一时的腕足动物至今只残存少数代表(如海豆芽)。

因为无脊椎动物体内没有调温乏统,随外界温度的变化,其代谢速度也发生变化。直到高等的软骨鱼类,如鲨鱼出现调温机制,为温血动物。真正意义上的恒温动物应该从鸟类开始。

海洋原索动物原索动物是原索动物亚门(如海鞘、樽海鞘)和头索动物亚门(如文昌鱼)动物的统称。原索动物与脊索动物的另一个亚门(脊椎动物亚门)相似,有一中空的背神经索、鳃裂以及脊索(一条质硬的支持身体纵轴的棒状结构,脊柱的前身)。原索动物与脊椎动物的主要区别是没有脊柱骨。现生的原索动物与脊椎动物由同一祖先演化而来。关于脊椎动物如何演化,普遍接受的理论主要有两种。一种理论推测其祖先衍演生活,可以像羽鳃类,但幼体不特化,适于在大洋中浮游而达到性成熟,由此演化出的类型丧失随后的固着阶段,脊椎动物即由这一自由游泳的动物演化而来。另一种相近的理论出现较晚,是假设脊索动物由一小类化石种类无脊椎属演化而来。

脊索动物是动物界最高等的一门。其成体或幼体背侧有一脊索,故名。分口索动物、尾索动物、头索动物和脊椎动物等四亚门。其中前三个亚门合称“原索动物”。

原索动物是脊索动物门原始的一群。其幼体或成体保留着脊索。脊索具有弹性,能弯曲,不分节,是构成骨胳的最原始中轴。原索动物种类少,全部海生,分为口索动物、尾索动物和头索动物三亚门。

口索动物也称“半索动物”,是脊索动物门的一亚门。口索动物体呈蠕虫状,左右对称,仅接近口部有脊索的形迹。其身体前端吻部有起源于体腔的水腔。例如柱头虫和玉钩虫。

柱头虫殖翼柱头虫科。柱头虫身体,呈长柱形,分吻、领和躯干三部分,长达40厘米。全身黄色,极柔软,容易切断。柱头虫定居海滩泥沙中,穴外堆土,常有碘臭,产于我国青岛一带。

玉钩虫也称“黄岛长吻柱头虫”属于玉钩虫科。玉钩虫与柱头虫相似,但体较短,吻较长。它产于我国青岛一带海中,是国家二级保护动物

尾索动物也称“被囊动物”,是脊索动物门的一亚门。尾索动物有少数自由生活的,终生具有脊索的尾部,如海樽、纽鳃樽等;也有固着生活的,仅幼体具有脊索的尾部,成体尾部退化消失,如海鞘等。

海樽属海樽科。海樽体小呈桶状,被囊透明,可通过被囊看到内部构造。海樽的生殖形式有有性生殖或出芽生殖。它多为单体,在海面营漂浮生活。

海鞘的排泄孔在口的附近。海鞘呈单体或由无性出芽而成群体。海鞘有性生殖的幼体形似蝌蚪,游泳时期极短,固着外物后尾部退化,遂成固着生活的成体。

头索动物也称“无头动物”,是脊索动物门的一亚门。头索动物体呈鱼形,头部分化不明显,终生具有脊索。其咽部的壁贯穿许多鳃裂,由同鳃腔孔与外界相通。它种类少,代表动物是文昌鱼。

文昌鱼别称“蛞蝓鱼”,是文昌鱼科。文昌鱼形似小鱼侧扁,两端尖。它头端有眼点,下为前庭及口,前庭外缘有须多条。文昌鱼有背鳍、尾鳍和臀鳍,身体腹面有一对皮褶。它栖息海底,通常钻在泥沙里,仅露出头端。以浮游生物为食。分布于我国厦门、青岛和烟台沿海,以厦门为最多。文昌鱼是无脊椎动物进化至脊椎动物的过渡类型,在学术上有重要意义。它可供生物学教学和研究用,也供食用。

海洋脊椎动物海洋脊椎动物包括有海洋鱼类、爬行类、鸟类和哺乳类。其中,海洋鱼类有圆口纲、软骨鱼纲和硬骨鱼纲。海洋爬行动物有棱皮龟科,如棱皮龟;海龟科,如螭龟和玳瑁;海蛇科,如青环海蛇和青灰海蛇等。海洋鸟类的种类不多,仅占世界鸟类种数的0.02%,如信天翁、鹱、海燕、鲣鸟、军舰鸟和海雀等都是人们熟知的典型海洋鸟类。分布于中同的海洋鸟类约有20多种,它们一部分为留鸟,大部分为候鸟。中国常见的海洋鸟类有:鹱形目的白额鹱和黑叉尾海燕等,鹈形目的褐鲣鸟和红脚鲣鸟,雨燕目的金丝燕和短嘴金丝燕等。海洋哺乳动物包括鲸目、鳍脚目和海牛目等。

海洋脊椎动物中的门脊椎动物是指有脊椎骨的动物,是脊索动物的一个亚门。这一类动物一般体形左右对称,全身分为头、躯干、尾三个部分,躯干又被横膈膜分成胸部和腹部,有比较完善的感觉器官、运动器官和高度分化的神经系统。脊椎动物包括鱼类、两柄动物、爬行动物、鸟类和哺乳动物等五大类。

脊椎动物数量最多,结构最复杂,进化地位最高,由软体动物进化而来。它们形态结构彼此悬殊,生活方式千差万别。脊椎动物除具脊索动物的共同特征外,其他特征还有:①出现明显的头部,中枢神经系统成管状,前端扩大为脑,其后方分化出脊髓。②大多数种类的脊索只见于发育早期(圆口纲、软骨鱼纲和硬骨鱼纲例外),以后即为由单个的脊椎骨连接而成的脊柱所代替。③原生水生动物用鳃呼吸,次生水生动物和陆栖动物只在胚胎期出现鳃裂,成体则用肺呼吸。④除圆口纲外,都具备上、下颌。⑤循环系统较完善,出现能收缩的心脏,促进血液循环,有利于提高生理机能。⑥用构造复杂的肾脏代替简单的肾管,提高排泄机能,由新陈代谢产生的大量废物能更有效地排出体外。⑦除圆口纲外,水生动物具偶鳍,陆生动物具成对的附肢。脊椎动物亚门包括:圆口纲、软骨鱼纲、硬骨鱼纲、两柄纲、爬行纲、鸟纲和哺乳纲。各纲的特征虽然有显着差别,但组成躯体的器官系统及其功能基本一致。

盾皮类盾皮类是戴盔披甲的鱼类,它们是甲胄,和化石无颌类不同,是由覆盖头部的头甲和包裹躯干的躯甲两个单元组成,东生清鳞鱼就是很好的例子。盾皮类是一支古老的有颌脊椎动物,和其它鱼类及高等脊椎动物一样,最前面的鳃弓发展成摄取食物的颌,颌上装备了牙齿。颌的出现是脊椎动物进化中的一次重大革命,无颌类只能被动地过滤水中的细小有机体,而有颌类可用颌主动摄取食物。盾皮类是一个种类纷繁的家族,泥盆纪为其全盛时期,但随着泥盆纪的结束而趋于消亡。云南鱼、武定鱼和般溪鱼,是部分不同种类的盾皮类。

鱼类鱼类中获得最大成功的要属硬骨鱼和软骨鱼类,二者在泥盆纪时虽在种类和数量上还远不能与无颌类的盾皮类匹比,在随后的时间里它们日益繁盛,现生的鱼类都属于这两类。

硬骨鱼类的一支,称为肉鳍类,包括终鳍类的肺鱼。因为终鳍类的鳍具有发达的肉质柄,栖内的骨骼和高等脊椎动物的四肢骨相似,所以科学家们相信它们中的一支是四足脊椎动物的祖先,在泥盆纪晚期发展出两栖类,因此早期终鳍鱼类特别受到古生物学家的青睐。发现于中国云南早泥盆世的着名的扬氏先驱鱼乃是当前所知最早的终鳍类代表。肉鳍类在中晚泥盆世甚是繁盛,以后逐渐衰落,现在残存的仅有南美洲肺鱼、澳洲肺鱼和极为罕见的终鳍类拉蒂曼鱼。

另一支硬骨鱼类在古生代时身体都覆盖厚重的菱形鳞片,因为鳞片表面敷以发亮的名为硬质的物质,所以它们被称为硬鳞鱼类。像吐鲁番鳕、长兴鱼、重庆鱼和中华弓鳍鱼都是这类的代表。至中生代后期,硬鳞鱼类日趋衰落,现在还生存的硬鳞鱼极为稀少,生活在中国长江的中华鲟堪你硬鳞鱼类中的活化石,被列为同家一级保护动物。

在生存竞争、优胜劣汰的自然规律下,到中生代后期硬鳞鱼逐渐被它们的后裔真骨鱼取代。真骨鱼类的鳞片由于硬质退化只保留骨质基屑,因此薄而富有韧性,既不失女鳞片保护作用,又摆脱了硬鳞的沉重负担,增加了灵活性。所以从中生代后期至今,真骨鱼类在进化中不断完善自己,长盛不衰,由海洋到江湖河流无处不在,成为世界上最宠大的脊椎动物。狼鳍鱼和昆都伦鱼都是原始的真骨鱼类代表。

软骨鱼类除了覆盖身体的细小盾鳞,所有骨骼都是由软骨组成,从不骨化,现海洋中的各种鲨鱼和银鲛就是这类鱼的代表。软骨鱼类从泥盆纪出现至今,在数量上一直没有大起大落,只有少数种类在古生代后期至中生代早期曾入侵到淡水中,大多数软骨鱼类局限于海洋。软骨鱼类之所以能够一直延续下来,是得益于它们内受精和富含蛋黄的卵,这是繁衍后代的有力保证。因为软骨鱼类骨骼为软骨性,在化石中不易保存,所以常见的化石是牙齿和鳞片。中华旋齿鲨化石,乃是其齿旋的一部份,这类牙齿在西藏珠峰也有发现。

海洋脊椎动物起源脊椎动物起源可能分五步。

高阶元生物类别的起源历来是进化生命科学的核心命题。包括人类在内的脊椎动物谱系总根底起源涉及到脊椎动物两大类群间的演化关系,因而不仅是学术界长期探索的一个焦点问题,也是大众普遍关注的一个科学热点。现代动物学从各个不同层次进行探索,近年来取得了较为广泛认同的脊椎动物起源分“四步走”的假说。该假说认为,在动物演化大树的两大基本分支潜系中,位于后口动物谱系顶端的脊椎动物与原口动物谱系没有直接联系。脊椎动物根植于后口动物脊椎系的演化轮廓是:从现在最低等的后口动物棘皮动物和半索动物为始点,先后经由仅在尾部具有脊索的尾索动物和脊索纵贯全身的头索动物,最后通过脊椎和头部构造的出现,诞生出该谱系的终端产物脊椎动物。然而学术界的共识是,这一基于现代动物学信息间接推测出来的假说到底是否可靠,还必须得到真实历史资料的检验、修正和补充。

要在古生物学上进行有效的脊椎动物起源研究,应该以现代动物学信息为重要线索,在尽可能靠近脊椎动物起源的“源头”时段探寻时做好两件工作——首先是力求发现最古老、最原始的脊椎动物;接着便是以这些脊椎动物始祖为起点,向前逐步追溯它们在无脊椎后口动物中的完善的祖先序列。我国保存了五亿三千万年前的众多精美后口动物软躯体构造化石的澄江化石库,恰好靠近这样的“源头”,为中国学者揭开这一谜团提供了一个难得的机遇。

年昆明鱼和海口鱼的发现被英国《自然》杂志评论为“逮住第一鱼”,为难题的破解投进了一缕曙光。2003年初,舒德干等人再度在《自然》杂志着文,他们通过对数百枚海口鱼标本的深入研究,揭示出它们一方面已经开始演化出原始脊椎骨和眼睛等重要头部感官,另一方面却仍保留着无头类的原始性器官,从而证实了它们不仅是已知最古老的脊椎动物,而且还属于地球上一类最原始的脊椎动物。早期后口动物的系列性发现,不仅与现代动物学关于脊椎动物起源分“四步走”假说相一致,更重要的是添加了比这“四步走”更为原始的“第一步”,从而首次提出了脊椎动物起源至少分“五步走”的新假说。这些始见于澄江化石库地层最底部的“第一步”动物群古虫类和云南虫类,是一些创生出咽腔型鳃系统的原始分节后口动物,极可能代表着学术界期盼已久的原口动物和后口动物分节的共同祖先与由于躯体特化而丧失分节性的后口动物(包括棘皮动物和半索动物)之间的过渡类型。十分有趣的是,尽管它们由于咽鳃的出现而引发了动物体在取食、呼吸等新陈代谢方式的重大革新而成为真正的后口动物,但其躯体却仍保留着其祖先的分节性特征。舒德干解释说:“实际上,既出现创新特征又继承祖先某些原始性状的镶嵌演化是生物界一种十分常见的现象。”在这分“五步走”的演化系列中,“第一步”的动物类群十分奇特。对1400多枚海口虫标本进行比较解剖学研究表明,它们不仅缺少脊索构造,而且在皮肤、肌肉、呼吸、循环和神经等器官系统上与脊索动物存在着根本区别;其中最为独特的是其由6对外鳃组成的呼吸系统,这与较为高等的后口动物的内鳃迥然有别。海口虫与同处“第一步”的古虫动物门在躯体构型上却相当一致——两者皆明显分节,而且躯体也都呈独特的“双重二分型”,即身体沿纵轴分为前体和后体两大部分,而前体又被一个能自由扩张的“中带”构造分为背、腹两个单元。所不同的是,海口虫兼具背神经索和腹神经索,这显示出它比占虫动物门稍略进步些,从而更靠近“第二步”中的半索动物。

舒德干指出,尽管我们提出了脊椎动物起源分“五步走”的新假说,但这仍只给出了一个演化轮廓,在其相邻演化步骤之间仍缺乏中间环节的证据。

海洋脊椎动物大家族——鱼纲板鳃亚纲:鳃裂5对,鳃间隔宽大,板状,如各种鲨、鳐。

全头亚纲:头大而侧扁,鳃裂4对,上颌骨与脑颅愈合,故称全头类,如我国产的黑线银鲛。

硬骨鱼系:骨骼一般为硬骨,体被骨鳞,少数种类为硬鳞或无鳞。口位于头部前端,有骨质鳃盖,肠内常无螺旋瓣,多数有鳔。一般体外受精,卵生。海淡水均产。常分三个亚纲:

肺鱼亚纲具有内鼻孔,除用鳃呼吸外,还能以鳔代替肺呼吸。现存的种类全世界仅三属,如分布在南美洲、非洲和澳洲的肺鱼。

总鳍亚纲的偶鳍为带鳞的肉叶,内部骨骼的排列与陆生脊椎动物肢骨的排列极为近似,是动物界“活化石”之一,如矛尾鱼。

辐鳍亚纲占现代鱼类的90%以上,它的骨骼系统几乎全由硬骨组成,鳍条呈辐射状,无内鼻孔,体被圆鳞或栉鳞。现将我国重要经济鱼类及名贵珍稀鱼类所属的目,简介如下:

鲱形目:头骨骨化不完全,尚保留软骨,背鳍无硬棘,鳍条柔软分节,所以也称软鳍类;因所有的椎骨构造都相同,故又称等椎类。鲱形日鳔管发达,体被圆鳞,如鲥鱼、鲱鱼、鲚、大银鱼和大麻哈鱼等,均为名贵鱼类。

鳗鲡目:体呈棍棒形,体前部圆而后部侧扁,一般无腹鳍,背、臀和尾三鳍完全相连。鳞小或无,如鳗鲡。鳗鲡为降河洄游性鱼类,在淡水中生长,入海产卵,是一种食用价值较高的经济鱼类,在我国和日本成为养殖对象。

鲈形目:为鱼纲中最大的一个目,绝大多数生活在海水中,通常有两个背鳍,多数被栉鳞,无鳔管。我国海产食用鱼类多属本目,如大黄(花)鱼、小黄(花)鱼、带鱼,连同软体动物中的乌贼合称“四大海产”。其他还有鲈鱼、鳜鱼(淡水产)、鲐鱼、银鲳以及引入的尼罗罗非鱼等。

此外,常见的经济鱼类还有:鳢形目的乌鳢、合鳃目的黄鳝、鲽形目的牙鲆和鲀形目的虫纹东方鲀等。

9. 蚂蚁有骨头和血液吗

蚂蚁有骨头和血液吗

蚂蚁可以举起超过自身重量几倍的物体,按照道理来说应该是有骨骼的吧。但这也仅仅是应该,毕竟自然界中有太多我们无法想象的奇迹。那么蚂蚁到底有没有骨骼呢?此外,蚂蚁是否有血液也成了一个问题。

蚂蚁是一种相对来说较为古老的昆虫,据说在恐龙繁盛的那个年代就已经有蚂蚁出现了,大约可以追溯到1亿年以前。目前世界上已知的蚂蚁共有9000种,属于节肢动物门,昆虫纲,蚁科。

其实蚂蚁是否有骨头对于蚂蚁本身来说貌似并不是那么重要,而我们只要知道蚂蚁具备几丁质的外骨骼和开管式的血液循环系统就OK了。

10. 水母身体的主要成分是水,那它有心脏吗

水母的构造比较奇特,既没有心脏、肺和大脑,也没有骨骼和肌肉。水母身体的主要成分是水,含有95%的水,身体呈现透明或者半透明状,好像果冻。其实水母是一种腔肠,动物品种很多,分布很广,但是构造很低级,没有智慧。

总结

水母身体中的毒性是比较厉害的,是一种神经性的毒素,可以致人死亡。很多人在潜水或者游泳的时候都会不小心触碰到水母,然后被水母的触手扎到,就会失去自己的生命。别被水母美丽的外表欺骗,一定要远离水母。

阅读全文

与哪些动物的心脏中有骨骼相关的资料

热点内容
微信改变我们哪些生活 浏览:1239
创造与魔法沙漠的动物在哪里 浏览:1238
篮球鞋网面为什么会破 浏览:1051
怎么拼升降板篮球 浏览:530
小型宠物猪多少钱 浏览:846
音乐文化课哪个好 浏览:672
到日本旅游如何报团 浏览:990
不在篮球场运球该在哪里练 浏览:1067
台湾哪里能买到宠物 浏览:1042
小动物怎么画才最好看 浏览:912
中西文化和西方网名有什么区别 浏览:1208
养宠物狗一般养多少年 浏览:887
广州黄埔哪里有卖宠物兔的 浏览:776
小米10怎么敲击背部打开相机 浏览:697
渔家文化目的有哪些内容 浏览:1071
海洋中发光的动物都有哪些 浏览:1146
如何消除美颜相机的标志 浏览:1057
篮球罚球为什么不往上抛 浏览:702
天香公园宠物医院洗澡在哪里 浏览:1127
怎么提高中国文化自信 浏览:265