① 乙肝疫苗的免疫疗效
当初乙肝疫苗的设计就是为预防用的,为了增加其免疫原性,添加了佐剂氢氧化铝,氢氧化铝能增强体液免疫,即增强特异性抗体的产生;但它对特异性细胞免疫有一定的抑制作用,所以,有不提倡用于乙型肝炎一说。
长期以来,乙肝疫苗未用于治疗,倒不是担心它有抑制细胞免疫作用,而是对它治疗作用认识不足。当时,很多人包括我自己都这样想,乙肝病人血液中的表面抗原已经够多了,这样多的乙肝表面抗原都不能刺激体液免疫产生相应抗体,再注射一点点表面抗原(乙肝疫苗)又能起什么作用呢?近年来,随着免疫学研究的发展,人们发现,较大剂量的乙肝疫苗确可打破免疫耐受而起到消除HBV-DNA及表面抗原的作用。现拿我手头的一篇材料(Immunology.1999,96:98-108),作者们应用转基因小鼠进行试验,共43只,用乙肝疫苗治疗1年,结果,治疗前树突状细胞功能良好者23例,治后HBsAg、HBeAg均阴转,HBV-DNA下降,而19例治疗前树突状细胞功能不好的,均无效。众所周知,转基因小鼠是典型的乙肝病毒免疫耐受者,应用乙肝疫苗1年结果:23/43有效、19/43无效,而且其疗效与治疗前树突状细胞的功能密切相关。至于为什么转基因小鼠血液中大量乙肝表面抗原引不起免疫反应,而注射乙肝疫苗就有反应?目前还没有确切的解释,有可能是血中虽有不少的HBsAg,但局部(皮下和肌肉)并不太多,不能有效地刺激大量存在于皮下的抗原递呈细胞——树突状细胞。注射乙肝疫苗后,局部的浓度明显增高了,因此可以有效刺激树突状细胞诱导特异性免疫反应。类似的动物实验材料还有,应用于人体的也有一些报告,总的看来,也有一定疗效,但不如动物实验那么好,是因为剂量偏小,还是佐剂(氢氧化铝)不好?还是有其他原因,均尚待研究。
乙肝疫苗不必三年打一次
专家小传:苏崇鳌,卫生部疾病控制中心研究员。多年从事预防医学事业,曾任中国预防医学科学院疾病控制处处长,现任中国肝炎防治基金会秘书长、卫生部肝炎防治专家咨询委员会委员。
我国乙型肝炎(以下简称“乙肝”)病毒携带者超过1.3亿,由于目前没有清除乙肝病毒的有效手段,所以我国要想摘掉“乙肝大国”的帽子,接种乙肝疫苗是惟一可行的方法。尽管新生儿早已推广接种乙肝疫苗,但是疫苗的有效性如何?成年人打一次疫苗,保护作用又能维持多长呢?记者为此采访了中国肝炎防治基金会秘书长苏崇鳌教授。
打疫苗1个月后要查抗体
苏教授指出,我国卫生部从1992年元月即已开始将乙肝疫苗免疫接种纳入儿童计划免疫管理,按照接种计划,新生儿在出生时、出生后第1个月、第6个月分别注射乙肝疫苗5微克,不是所有人在接种后都会产生抗体,因此在出生后第8个月应及时检测血液里有没有抗体,如果没有产生抗体或者水平不高,则需要及时追加5微克,刺激免疫系统产生相应的抗体。
成人打疫苗,剂量比儿童大一倍
苏教授同时指出,接触乙肝病毒携带者的成人也需要接种疫苗。此前国家只要求新生儿接种疫苗,是因为担心疫苗资源有限,无法满足所有人的需要。通过基因工程技术,我国目前每年可以生产乙肝疫苗约8000万份,不仅可以满足1600万新生儿的需要,也可为需要接种的成人提供足够多的疫苗。
成人乙肝疫苗接种疗程与儿童相似,只是剂量要加大到10微克,如果没有产生抗体,还可以加大剂量至20微克,绝大多数人在加大剂量后都可以产生抗体。
针对不少人认为乙肝疫苗保护作用会逐渐减弱的担心,苏教授指出,疾病控制中心不久前完成了一项针对数万名乙肝疫苗接种者的调查,结果表明,上述健康人在接种疫苗15年后无一例成为乙肝病毒携带者。研究同时表明,在新生儿期接种疫苗15年后,有40%的人仍有乙肝抗体。
没有乙肝抗体不代表没有免疫力
苏教授认为,理论上讲,乙肝疫苗接种后其保护作用几乎可以维持一生。人体对乙肝病毒的免疫力可以分为两部分,即细胞免疫和体液免疫。抗体仅反映了体液免疫的水平,而细胞免疫也很重要。目前临床上尚未常规检测细胞免疫,主要是由于检测费用非常昂贵。并不能认为,只有抗体能反映免疫力,更不能说检测不到乙肝抗体,人体就没有对乙肝病毒的免疫力。
目前有人认为乙肝疫苗最好3年接种一次。苏教授认为,这没有必要。尽管乙肝疫苗已经列入我国的新生儿计划免疫,但是卫生部现在还没有规定,儿童长到几岁后,要再次接种疫苗。有的专家认为7岁接种是安全的,有的认为延后到12岁亦可。苏教授个人认为,小孩长到10岁再接种疫苗比较合适。对于成人,也可以在首次接种10年后再次接种。尽管专家的观点不尽相同,但无论如何,每3年接种一次疫苗实在没有必要。 当然,如果打了也没有副作用。
② 植物组织培养有什么应用
一、农业上的应用
1. 快速繁殖种苗(rapid propagation)
用组织培养的方法进行快速繁殖是生产上最有潜力的应用,包括花卉观赏植物、蔬菜、果树、大田作物及其他经济作物。快繁技术不受季节等条件的限制,生长周期短,而且能使不能或很难繁殖的植物进行增殖。
快速繁殖可用下列手段进行:
⑴通过茎尖、茎段、鳞茎盘等产生大量腋芽;
⑵通过根、叶等器官直接诱导产生不定芽;
⑶通过愈伤组织培养诱导产生不定芽。
试管快速繁殖应用在下列生产或研究中:
(1)繁殖杂交育种中得到的少量杂交种,以及保存自交系、不育系等。
(2)繁殖脱毒培养得到的少量无病毒苗。
(3)繁殖生产上急需的或种源较少的种苗。
由于组织培养周期短,增殖率高及能全年生产等特点,加上培养材料和试管苗的小型化,这就可使有限的空间培养出大量的植物,在短期内培养出大量的幼苗。
2.无病毒苗(virus free)的培养
植物在生长过程中几乎都要遭受到病毒病不同程度的危害,有的种类甚至同时受到数种病毒病的危害,尤其是很多园艺植物靠无性方法来增殖,若蒙受病毒病,代代相传,越染越重,甚至会造成极严重的后果。
自从Morel l952年发现采用微茎尖培养方法可得到无病毒苗后,微茎尖培养就成为解决病毒病危害的重要途径之一。若再与热处理相结合,则可提高脱毒培养的效果。
对于木本植物,茎尖培养得到的植株难以发根生长,则可采用茎尖微体嫁接的方法来培育无病毒苗。
组织培养无病毒苗的方法已在很多作物的常规生产上得到应用。如马铃薯,甘薯,草莓,苹果,香石竹,菊花等。而且已有不少地区建立了无病毒苗的生产中心,这对于无病毒苗的培养、鉴定、繁殖、保存、利用和研究,形成了一个规范的系统程序,从而达到了保持园艺植物的优良种性和经济性状的目的。
3. 在育种上的应用(breeding)
植物组培技术为育种提供了许多手段和方法,使育种工作在新的条件下更有效的进行。
⑴倍性育种,缩短育种年限,杂种优势明显。
⑵克服远缘杂交的不亲合性和不孕性(胚培养)
⑶保存种质
例如:用花药培养单倍体植株;
用原生质体进行个体细胞杂交和基因转移;
用子房、胚和胚珠完成胚的试管发育和试管受精,以及种质资源的保存等等。
胚培养技术很早就有利用,在种属间远缘杂交的情况下,由于生理代谢等方面的原因,杂种胚常常停止发育,因此不能得到杂种植物,所以通过胚培养就可保证远缘杂交的顺利进行。
到50年代在实践上的应用就更多了。如在桃、柑橘、菜豆、南瓜、百合、鸢尾等等许多园艺植物远缘杂交育种上都得到了应用。大白菜X甘蓝的远缘杂交种"白兰",就是通过杂种胚的培养而得到的。
对早期发育幼胚因太小 难以培养的种类,还可采用胚珠和子房培养来获得成功。利用胚珠和子房培养也可进行试管受精 ,以克服柱头或花柱对受精的障碍,使花粉管直接进入胚珠而受精。花药、花粉的培养在苹果、柑橘、葡萄、草莓、石刁柏、甜椒、甘蓝、天竺葵等约20 种园艺植物得到了单倍体植株。
在常规育种中为得到纯系材料要经过多代自交,而单倍体育种,经染色体加倍后可以迅速获得纯合的二倍体,大大缩短了育种的世代和年限。
利用组织培养可以进行突变体的筛选。突变的产生因部位而异,茎尖遗传性比较稳定,根、茎、叶乃至愈伤组织和细胞的培养则变异率就较大。培养基的激素也会诱导变异,因浓度而不同。此外还可采用紫外线、x射线、Y射线对材料进行照射,来诱发突变的产生。
在组织培养中产生多倍体、混倍体现象的比较多,产生的变异为育种提供的材料,可以根据需要进行筛选。利用组织培养,采用与微生物筛选相似的技术,在细胞水平上进行突变体的筛选更加富有成效。原生质体培养和体细胞杂交技术的开发,在育种上展现了一幅崭新的前景。已有多种植物经原生质体培养得到再生植物,有些植物得到体细胞杂种,无论在理论和实践上都有重要价值。随着这方面工作的深入和水平的提高,原生质体培养一定会在育种上产生深远的影响。
4. 工厂化育苗(instrializing propagation)
近年来,组织培养育苗工厂化生产已作为一种新兴技术和生产手段,在园艺植物的生产领域蓬勃发展。
⑴含义:是指以植物组织培养为基础,将外植体接种在人工配制的培养基上,通过控制环境条件,使细胞脱分化、再分化成新的组织、器官,进而培育出与母株一样的批量幼苗的方法。例如:非洲紫罗兰组织培养育苗的工厂化生产。
⑵特点:繁殖快,整齐、一致,无病虫害,周期短,周年生产,性状稳定。
⑶作用:有利于繁殖系数低、杂合材料的快速繁殖
有利于有性繁殖优良性状易分离材料的繁殖
有利于保持从杂合的遗传群体中筛选出的表现型优异植株的优良遗传性。
组织培养育苗的无毒化生产,还可减少病害传播。
可以减少气候条件对幼苗繁殖的影响,缓和淡、旺季的供需矛盾。
⑷现状: 世界上一些先进国家园艺植物组织培养技术的迅速发展从60年代就已经开始,并随着生长、分化规律性探索的逐步深化,到了70年代仅花卉业就已在兰花、百合、非洲菊、大岩桐、菊花、香石竹、矮牵牛等二十几种花卉幼苗生产上建立起大规模试管苗商品化生产。
到1984年世界花卉幼苗产业的生产总值已达20亿美元,其中美国花卉幼苗市场总值为6亿多美元,日本三友种苗公司有60%的幼苗靠组织培养技术繁殖。1985年仅兰花一项,在美国注册的公司就有100余家,年销售额在1亿美元以上。
由于组织培养技术的应用,加快了花卉新品种的推广。以前靠常规方法推广一个新品种要几年甚至十多年,而现在快的只要1~2年就可在世界范围内达到普及和应用。
我国采用快速繁殖技术,也使优良品种达到迅速的推广和应用。如广东切花菊"黄秀风"的应用,使菊花变大,长势加强,花色鲜艳,抗病力增强,打开了进入香港市场的渠道,使30多种观叶植物的推广很快遍及全国,丰富了人们的生活,并将自然界的几百个野生金钱莲品种繁种驯化,培养了一批园林垂直绿化的材料,促进了园林业的发展。
⑸制约:植物组织培养也存在一定的困难。
首先是繁殖效率与商品需 要量的矛盾,有些作物由于繁殖方法尚未解决,因而无法满足生产的需要。其次是在培养过程中如何减少变异株的发生。更重要的是应降低组培苗工厂化生产的成本,只有降低成本,才能更好的投产应用。
总之,随着组织培养这一技术的发展及各种培养方法的广泛应用,使这一技术在遗传育种、品种繁育等方面表现出了巨大的潜力,特别是生物工程和工厂化育苗实施以后,它将以新兴产业的面目在技术革命中发挥重大作用。
二、在遗传学、分子生物学、细胞生物学、组织学、 胚胎学、基因工、生物工程等方面的应用
要揭开生命活动的秘密,需要多科学、多技术的相互配合,其中植物组织培养技术是不可缺少的,它为遗传学、分子生物学、细胞生物学、生物工程等提供了一种有效、快速的方法。
因为要揭示生命的奥秘,首先要研究单个基因的作用,研究它在细胞内是如何组装的,如何与其它基因发生联系,如何表达和调控等。分离单个基因,对它DNA 进行测序,再对其中的某些碱基实行突变,然后还需要将基因送到受体细胞当中,看表达情况,以确定其功能。接受基因的受体细胞要产生再生植株,就需要通过组织培养的方法才能实现。
三、 利用组织培养的材料作为植物生物反应器
中国的中草药是一份人类宝贵的财富,但很多种中草药资源匮乏,产量不足,甚至濒于灭绝。如果能利用组织和细胞培养的方法在实验室内生产,不再依附于自然环境,不仅可以解决现有困难,而且可以通过筛选高产有效成分的细胞系,来提高其药用价值。
比如用培养的人参悬浮细胞,来生产人参皂苷,已在日本等国家形成规模。利用培养的植物细胞和组织细胞作为生物反应器,也可以生产某些蛋白质、氨基酸、抗生素、疫苗等,如用生食蔬菜生产乙肝疫苗正在实验中。
四、用于其它未知科学的研究
现代科学发展非常迅速,很多现在预想不到的事情都有可能发生,新发明、新发现、新创造层出不穷,今天认为不可能的东西明天就可能变成现实。植物组织培养也同样具有许多尚未发掘出的潜力,说不定有一天人们会在三角瓶内种出大南瓜。
总之,现在的植物组织培养仍然处于发展阶段,远远没有达到它的高峰期,很多机理人们还没有搞清楚,它的潜力还远远没有发挥出来。相信在今后的几十年内,组织培养在我国将会有更大的发展,在农业、制药业、加工业等方面将会发挥更大的作用,创造出更大的经济效益。
③ 一个生物问题
线粒体(mitochondrion)
线粒体是1850年发现的,1898年命名。线粒体由两层膜包被,外膜平滑,内膜向内折叠形成嵴,两层膜之间有腔,线粒体中央是基质。基质内含 有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。线粒体是细胞内氧化磷酸化和形成ATP的主要场所,有细胞"动力工厂" (power plant)之称。另外,线粒体有自身的DNA和遗传体系, 但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。
线粒体的形状多种多样, 一般呈线状,也有粒状或短线状。线粒体的直径一般在0.5~1.0 μm, 在长度上变化很大, 一般为1.5~3μm, 长的可达10μm ,人的成纤维细胞的线粒体则更长,可达40μm。不同组织在不同条件下有时会出现体积异常膨大的线粒体, 称为巨型线粒体(megamitochondria)
在多数细胞中,线粒体均匀分布在整个细胞质中,但在某些些细胞中,线粒体的分布是不均一的,有时线粒体聚集在细胞质的边缘。在细胞质中,线粒体 常常集中在代谢活跃的区域,因为这些区域需要较多的ATP,如肌细胞的肌纤维中有很多线粒体。另外, 在精细胞、鞭毛、纤毛和肾小管细胞的基部都是线粒体分布较多的地方。线粒体除了较多分布在需要ATP的区域外,也较为集中的分布在有较多氧化反应底物的区 域,如脂肪滴,因为脂肪滴中有许多要被氧化的脂肪。
形态与分布
线粒体一般呈粒状或杆状,但因生物种类和生理状态而异,可呈环形,哑铃形、线状、分杈状或其它形状。主要化学成分是蛋白质和脂类,其中蛋白质占线粒体干重的65-70%,脂类占25-30%。一般直径0.5~1μm,长1.5~3.0μm,在胰脏外分泌细胞中可长达10~20μm,称巨线粒体。数目一般数百到数千个,植物因有叶绿体的缘故,线粒体数目相对较少;肝细胞约1300个线粒体,占细胞体积的20%;单细胞鞭毛藻仅1个,酵母细胞具有一个大型分支的线粒体,巨大变形中达50万个;许多哺乳动物成熟的红细胞中无线粒体。通常结合在维管上,分布在细胞功能旺盛的区域。如在肝细胞中呈均匀分布,在肾细胞中靠近微血管,呈平行或栅状排列,肠表皮细胞中呈两极性分布,集中在顶端和基部,在精子中分布在鞭毛中区。线粒体在细胞质中可以向功能旺盛的区域迁移,微管是其导轨,由马达蛋白提供动力。
超微结构
线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔。在肝细胞线粒体中各功能区隔蛋白质的含量依次为:基质67%,内膜21%,外8%膜,膜间隙4%。
1、外膜 (out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。它是包围在线粒体外面的一层单位膜结构。厚6nm, 平整光滑, 上面有较大的孔蛋白, 可允许相对分子质量在5kDa左右的分子通过。外膜上还有一些合成脂的酶以及将脂转变成可进一步在基质中代谢的酶。
2、内膜 (inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。它是位于外膜内层的一层单位膜结构, 厚约6nm。内膜对物质的通透性很低, 只有不带电的小分子物质才能通过。内膜向内折褶形成许多嵴, 大大增加了内膜的表面积。内膜含有三类功能性蛋白:①呼吸链中进行氧化反应的酶; ②ATP合成酶复合物; ③一些特殊的运输蛋白, 调节基质中代谢代谢物的输出和输入。
3、膜间隙(intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。它是内膜和嵴包围着的线粒体内部空间, 含有很多蛋白质和脂类,催化三羧酸循环中脂肪酸和丙酮酸氧化的酶类, 也都存在于基质中。此外, 还含有线粒体DNA、 线粒体核糖体、tRNAs、rRNAs以及线粒体基因表达的各种酶。基质中的标志酶是苹果酸脱氢酶。
4、基质(matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca2+、Mg2+、Zn2+等离子。 线粒体内膜向基质折褶形成的结构称作嵴(cristae), 嵴的形成使内膜的表面积大大增加。嵴有两种排列方式:一是片状(lamellar), 另一是管状(tubular)。在高等动物细胞中主要是片状的排列, 多数垂直于线粒体长轴。在原生动物和植物中常见的是管状排列。线粒体嵴的数目、形态和排列在不同种类的细胞中差别很大。一般说需能多的细胞,不仅线粒体多,而且线粒体嵴的数目也多。线粒体内膜的嵴上有许多排列规则的颗粒称为线粒体基粒(elementary particle),每个基粒间相距约10 nm。基粒又称偶联因子1(coupling factor 1),简称F1,实际是ATP合酶(ATP synthase),又叫F0 F1 ATP酶复合体, 是一个多组分的复合物。
-----------------------------------摘自<网络>
健那绿(Janus green B)染液,原来也曾译为詹纳斯绿 B,是专一性染线粒体的活细胞染料,线粒体中细胞色素氧化酶使染料保持氧化状态(即有色状态)呈蓝绿色,而在周围的细胞质中染料被还原,成为无色状态. 因此可以使活细胞中的线粒体呈现蓝绿色,而细胞质接近无色.线粒体能在健那绿染液中维持活性数小时,通过染色,可以在高倍显微镜下观察到生活状态的线粒体的形态和分布.
配制质量分数为1%健那绿染液:
将0.5g健那绿溶解于50mL生理盐水中,加温到30-40摄氏度,使其充分溶解.
④ 植物疫苗是怎么研制出来的
人会生病,植物也会生病,植物的病虫害会给农业和林业带来严重的危害。为了确保农业丰收和森林繁茂,科学家们发明出各种各样的化学农药,为植物防病除害。
但是,化学农药在消灭病虫害的同时,也给环境带来了可怕的污染,同时,生产化学农药还要耗费大量的金钱。显然,它不是对付病虫害的最好方法,也不是长远和根本的方法。
众所周知,很早以前人类就已经知道,通过种牛痘的方法,能使人对天花病毒产生终身免疫。这个事例使农业科学家得到启示,既然可以给人注射防病疫苗,同样的方法是否在植物身上也行得通呢?这是一个很有意思的想法,如果成功的话,会使植物得到终身免疫能力。这样,再也不用在农田中喷洒大量的化学农药了,既节约了金钱,又可减少环境污染。
要想达到这个目的,首先要设法将病毒抗体植入到植物体内,并要能够长期存留发挥作用,或者设法使植物体自身产生出抗体。在这样的思路的引导下,1980年,日本的一个研究小组创造了为植物“种牛痘”的新方法,它与人类种牛痘的原理有些相似。因为植物病毒会互相干扰,如果植物体内已经有了一种病毒,往往能阻止其他病毒的生长和繁殖。因此,科学家在预防西红柿生病时,首先把能使植物致病的烟草花叶病毒分离出来,经过长时间培养,使它的毒性慢慢减弱。然后,用高压喷雾器把毒性大为减弱的病毒送到西红柿幼苗体内,这样,就能使西红柿一生都不会感染病毒了。从此以后,植物疫苗的研究走上了飞速发展的道路。
随着现代基因工程的诞生,人们不仅能“改造”动物,也可以“改造”植物,这使植物疫苗的研究进入到一个崭新的领域。
新技术的出现,使植物疫苗研究发生了革命性的变化。这项新技术被称为转基因技术,也就是分子遗传学和基因工程的一项实验技术。它能够通过显微注射、基因枪、病毒感染等多种途径,将需要发挥作用的基因转入到某种生物的胚胎细胞中,并在这种生物体内产生出生物学效应。
1982年,美国孟山都公司和比利时肯特大学的科学家,利用转基因技术,成功地将具有抗菌能力的卡那链绿菌的基因转入到向日葵植株内,使它的抗病能力大大增强。在首次成功的鼓舞下,他们又对烟草、胡萝卜等植物进行了实验,并获得了成功。
疫苗使植物产生了抗病能力,能不能培育出某种植物,使它不仅自身具备免疫力,而且人类吃了这种植物后,就像注射过疫苗一样,也能产生出终生免疫力呢?这是一个十分大胆的设想,要想实现尽管困难重重,但在理论上还是行得通的。于是,科学家朝这个方向又开始了新的努力。
进入20世纪90年代之后,美国得克萨斯州立大学的科学家利用转基因技术,培养出一种奇特的“薯仔疫苗”。这种薯仔具有抗乙肝病毒的作用,动物吃了它以后,体内的免疫系统会产生出乙肝病毒抗体,对乙肝病毒就有了免疫能力。“薯仔疫苗”的问世受到了广泛的欢迎,因为它价廉物美,安全有效,与以往用动物血清或人血清制造疫苗的方法相比,大大降低了成本。
但是,“薯仔疫苗”有个很大的缺陷,就是对人类不太适宜。因为对人类来说,薯仔是一种不能生吃的食物,如果把薯仔煮熟了,疫苗会因为高温而受到破坏,使免疫能力大大减弱,甚至完全丧失。
为了弥补这一缺陷,必须寻找一种能生吃的植物作为植物疫苗。经过无数次的实验之后,美国康乃尔大学独立研究所的生物技术专家,终于选定香蕉作为研究免疫载体的对象。
香蕉的确有许多优点,它除了可以生吃外,价格也很便宜,而且又可以普遍种植。我们知道,生产一支普通的疫苗,成本通常要高达几十美元,甚至100多美元,而通过大面积种植生产出来的“香蕉疫苗”,只需要几毛钱就够了。
前不久,美国的细胞生物学家米奇·海因到非洲考察,发现那儿霍乱横行,许多当地人由于贫穷,买不起昂贵的抗霍乱疫苗,结果悲惨地死去。米奇·海因回国后,决心改变这一现状。
他首先从霍乱病菌中分离出无毒的霍乱抗原,“剪下”霍乱抗原基因,再把它“缝合”到生活在土壤中的一种细菌体内,然后让苜蓿感染这种细菌,于是,霍乱抗原的基因就移植到苜蓿体内的细菌中了。一切准备就绪后,米奇·海因对这种苜蓿进行大规模培养,使培养出来的苜蓿都具有能抵抗霍乱病菌的抗原。
这是一项非常了不起的研究成果。因为在非洲和一些发展中国家,由于医药科学比较落后,而霍乱病菌经过许多代的变异,对青霉素、链霉素等一些普通抗生素产生了耐药性,使患病者得不到有效治疗。有了“苜蓿疫苗”,人们只要吃上一盘可口的苜蓿色拉,就可以获得抵抗霍乱病菌的免疫力,那将能挽救多少人的生命啊!
现在,科学家们正在培育能预防白喉、龋齿、肝炎等疾病的“蔬菜疫苗”和“水果疫苗”。但是,这些还仅仅是实验室的成果,要想把它转化为大规模生产,还有许多难以逾越的技术障碍。其中最使科学家伤脑筋的是难以控制其含量,也就是说,植物疫苗中致命疾病的抗原含量必须保证精确,既不能多也不能少,因为少了无法起到免疫作用,多了又会使人有患上疾病的危险。
在已经到来的21世纪,科学家们正在全力以赴地攻克难关,为普及植物疫苗铺平道路。也许用不了多久,将植物变成疫苗,就会像生产抗生素那样方便,到了那时候,远离大医院的乡村山区居民,只要吃一根香蕉或一个苹果,就可以预防某种疾病,这将是多么诱人的前景啊。
⑤ 基因工程应用举例
运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。
1、转基因鱼
中科院水生生物研究所鱼类转基因工程组的科学家们,在朱作言院士的领导下,将草鱼的生长激素基因注入鲤鱼的受精卵,培育出一种带有草鱼生长激素基因的转基因鲤鱼F1代和另一种具有草鱼生长激素基因的转基因三倍体鲤鱼“吉鲤”。
2、转基因牛
转基因牛是利用转基因技术对牛进行品种改良或新品种培育,主要体现在两个方面:一是提高牛的抗病能力;二是提高牛的肉奶产量、改善奶品质,同时转基因技术在改善牛的生长、肉质等性状也有一些重要进展。
3、转基因抗冻西红柿
美国加利福尼亚基因公司,利用基因工程技术,培育出了一种转基因西红柿,这种西红柿不产生会引起自身腐烂的聚半乳糖醛酸酶,因此不易腐烂,风味保持的时间较长。
4、基因工程胰岛素
胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。
将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%!
5、基因工程干扰素
干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。
基因工程人干扰素α-2b(安达芬) 是中国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。
⑥ 动物细胞和植物细胞
分类: 资源共享
问题描述:
我想要这两个的结构图 最好是英文的。
解析:
pep/200503/ca656075
还有相关的文字资料:
北京时间1999年11月21日凌晨3时41分,我国发射的第一艘试验飞船“神舟”号在完成了空间飞行试验后在内蒙古自治区中部地区成功着陆。图为技术人员正在对飞船返回舱进行现场技术处理。 新华社发
“神舟”一号
1999年11月20日发射升空,11月21日返回,飞行1天。
“神舟”一号是不载人的试验性飞船。这是“长征”二号F型火箭的首次研制型飞行试验,主要目的是考核运载火箭的性能和可靠性。
实验:飞船搭载一些农作物种子,包括各10克左右的青椒、甜瓜、番茄、西瓜、豇豆、萝卜等品种以及甘草、板蓝等中药材。此外,还搭载了有利于心脑血管疾病药物开发的Monascus生物活性菌株。
“神舟”二号
2001年1月10日发射升空,1月16日返回,飞行7天。
这是我国第一艘正样无人飞船,技术状态与载人飞船基本一致。
实验:首次在飞船上进行了微重力环境下空间生命科学、空间材料、空间天文和物理等领域的实验,包括提取乌龟的心脏细胞,观察太空环境对心脏细胞的影响,进而探索生命的奥秘。其他搭载物还有鱼星藻、螺旋藻等各种藻类和灵芝大肠杆菌等菌类。
“神舟”三号
2002年3月25日发射升空,4月1日返回,耗时6天零18个小时。
“神舟”三号飞船搭载了“模拟人”,模拟航天员呼吸和血液循环系统中的心律等多种太空生活的重要生理活动参数,为未来航天员进入太空提供可靠的数据。飞船改进和完善了包括伞系统在内的一系列与航天员安全性相关的措施和功能。
实验:“神舟”三号搭载物有鸡蛋空间孵化箱、天曲母菌,还有4个细胞样品,其中有两个样品可产生抗天花粉蛋白抗体和抗衣原体类性病的抗体——这些研究成果将有利于进行生物药物研发,包括治疗艾滋病药物。
“神舟”四号
2002年12月30日发射升空,1月5日返回,耗时6天零18小时。
飞船技术状态与载人飞行时完全一致,解决了前三次无人飞行试验中发现的有害气体超标等问题,运载火箭和飞船完善了航天员逃逸救生功能。
实验:进行了包括曾被广泛关注的细胞“太空婚礼”——动物细胞和植物细胞两项空间细胞融合试验,为空间制药和培育生物新品种探索新的方法。其他搭载物还包括蔬菜、花卉种子和树苗等,如专为西部开发和北京周边绿化而搭载的杨树苗和红豆杉苗。
“神舟”五号
2003年10月15日发射升空,定于10月16日返回,飞行21小时。
飞船进一步完善了应急救生系统,从起飞到着陆都精心设计了救生方案。”
实验:舱内未安放任何科学实验仪器,旨在保障航天员足够的活动空间和安全。航天员一日三餐甚至包括鱼香肉丝等有中国特色的食物。飞船还搭载总计1000克花卉、蔬菜、水果种子,利用空间技术手段促进改良遗传。
我国的载人航天工程于1992年1月被正式批准,拟定将发射6艘飞船,即“神舟”一号至“神舟”六号,并实现飞船的安全载人和返回。中国空间技术研究院有关人士最近接受了《科学探索杂志》记者的采访。这位专家表示,载人飞船的主要用途是作为空间站的运输器,未来的每一艘“神舟”飞船发射后,都会有一个轨道舱留在太空轨道,成为“空间实验室”。但空间实验室只能相当于一个“单间”,通过多次发射,多个轨道舱在太空对接,才能形成真正的“空间站”。多个轨道舱通过多次对接后,空间站才能算得上一个功能齐全的“单元”,各舱之间可分可通,航天员可以从一个舱钻进另一个舱里进行各种工作。
另外的
“神舟”四号飞船上装有实验设备52件,其中返回舱15件、轨道舱20件、附加段17件。这52件设备中,有33件是头一次上星,有19件设备曾经上过“神舟”二号和“神舟”三号卫星。飞船应用系统的科学实验,可以分成三大类:对地观测、空间环境监测和空间科学实验,具体有六项。
对地观测试验包括多模态微波遥感器对地探测和综合精密定轨两项。
微波遥感——比“相机”更灵活的观测手段
“多模态微波遥感器是我们这次卫星上的一个‘大件’,我们叫它主载荷,也就是最重要的一部分试验设备。”赵主任介绍微波遥感实验设备时这样开头。
微波遥感是新型的对地观测手段,为世界各先进国家重视,我国从上世纪八十年代开始航空微波遥感设备的研制,近20年来得到长足发展。微波遥感是新型对地观测手段,通过接受地表物体的电磁波信息来对海洋、陆地、大气进行观测。它比照相机更灵活,能全天候接受微波信息。不管是阴天雨天,都不影响观测的进行。“神舟”四号飞船装载的多模态微波遥感器是由我国自己设计的,这次首次上天进行试验,它包括微波辐射计、微波高度计、微波散射计三个部分,三部分各司其职,能够综合观测到更丰富的信息。
微波辐射计主要用来探测地表物体的温度特征和水分特征。飞船传回的数据经过处理,图片显示温度高的区域颜色较深;相反,温度低的区域颜色较浅。降水中水汽含量、积雪、土壤中水分的含量也能通过微波辐射计探测到。高度模态探测计主要用来探测高度,例如海面高度、海浪高度和大洋环流。而散射模态探测计则主要用来探测海面风速和风向。
精密定轨——确定飞船自己的位置
“精密定轨实验主要是为了配合微波遥感探测器中的高度计。比如,要通过高度计辐射回来的电磁波信号计算海平面的高度,首先要确定飞船自己是多高。”
“神舟”四号飞船的精密定轨采用多种手段,包括船载GPS、激光反射器和无线电应答机。GPS定位,主要通过接收机,接收导航卫星传来的信号。激光雷达测距是靠地面的激光跟踪站发射激光,再根据从飞船上反射回来信号,进行数学计算,测定飞船的准确位置。这位副总设计师介绍说,目前这种测算方法是最精确的。现在,我们对于“神舟”四号的定位可以精确到几米以内。
空间环境监测——绘制太空“安全示意图”
空间环境及其变化是载人航天十分关注的问题,关乎载人航天器和航天员的安全。“神舟”飞船第四次飞行试验应用任务中安排了综合性空间环境的监测。“神舟”四号飞船除了继续进行高层大气探测,同时还配置了对航天员和飞船安全至关重要的高能辐射、低能辐射探测,实时监测飞船轨道空间的各种环境参数,为航天员和飞船的安全防护提供重要依据。
科学家说,他们已经通过进一步探测,更准确、全面地了解轨道环境,为今后载人航天绘制了一张比较精确的太空轨道“安全示意图”。
通过前三次飞行试验,应用系统对空间环境及预报方法的研究已进入成熟阶段。空间环境预报中心通过收集并综合分析国内外卫星和地面观测数据,发布远期、中期、近期预报和飞船发射、运行期间的空间环境状况和可能出现的空间环境异常预报;提供有关太阳活动、空间辐射、地磁活动等参数和飞船运行轨道的大气参数,在出现危急情况时发布警报等方面都成功地为我国的载人航天器提供了安全保障。
细胞电融合——太空中培育生物新品种
细胞融合技术是生物加工、培育新品种和生物制药的新技术。空间微重力条件下,细胞在融合液中的重力沉降现象消失,可以提高电融合杂种细胞得率和细胞活力,为人类利用微重力资源进行空间制药探索新方法。
“神舟”四号飞船上的电融合仪由我国自行设计,在一套实验装置中同时分别进行动物细胞和植物细胞的两项电融合实验,以求获得新药物和新植物品种的方法和技术。采用纯化的乙肝疫苗病毒表面抗原免疫的小鼠B淋巴细胞和骨髓细胞进行动物细胞电融合;采用有液泡的黄花烟草原生质体和脱液泡的革新一号烟草原生质体进行植物细胞电融合。
1月6日凌晨4时15分,随“神舟”四号飞船返回舱顺利返回地面的实验设备被最先运到了中科院。在地面上也同时一对一的进行着地面实验。分析数据表明,空际实验结果比地面实验结果细胞融合率提高了几倍到十几倍。
空间分离纯化——太空中分离蛋白质分子
生物医学和生物技术的发展,使一些高纯度的生物材料如氨基酸、蛋白质的分离纯化方法成为重要的基础应用技术。“神舟”四号上安排了电泳分离实验来开展这一项目研究,设备由中国自行研制,实验生物样品为细胞色素C和小牛血红蛋白。
专家介绍说,连续自由流电泳分离具有效率高、设备操作简单、分辨率好、过程和条件可控、对产物损伤小等优点,是制备型的主要分离手段。在“神舟”四号上安排的电泳分离实验主要目的是为研究其规律,通过实验积累经验,为我国的蛋白质和其他生物大分子分离纯化技术的研究发展奠定基础。
微重力流体物理实验——看一滴油在太空中如何运动
流体物理学研究是微重力科学的重点领域,“神舟”四号飞船进行的这项实验,研究在太空失重状态下,流体包括液体、汽体等平衡与运动的规律看一滴油在太空中如何流动、如何维持平衡等。
流体物理学研究微重力环境下的液滴迁移动力学问题,既有理论方面的重要性,也有很强的应用背景,如在微重力环境下的材料加工、晶体掺杂、空间焊接及电泳过程中都会遇到液滴或气泡的迁移问题。在“神舟”四号飞船上安排的实验项目,采用我国自行研制的通用流体实验装置,在不同条件下实验,在相关理论研究中取得新的突破。
⑦ 科学技术对养殖业的发展有什么作用
近期主要研究成果 菠菜主要捕光复合物(LHC-II) 2.72?分辨率的晶体结构 SARS病毒蛋白质的结构与功能研究 - SARS冠状病毒主要蛋白酶及其抑制剂复合物的晶体结构 果蝇的视觉模式识别具有视网膜位置不变性 果蝇面对竞争的视觉线索的抉择行为 关于视觉信息基本表达的长距离似运动脑成像研究 中脑对侧抑制和同侧感受野的动态调控 CD146:一个新的肿瘤血管标志分子 复合土壤微生态制剂生产技术 该技术是以有益微生物为核心研制土壤微生态制剂,对枯萎病、立枯病等土传病害防达到70%,可有效防治棉花、西瓜、草莓等作物的重茬病害,可增产30%以上 自20世纪70年代以来,生物科学飞速发展。生物学在微观方向上,已经从细胞水平进入到分子水平去探索生命的本质;在宏观方面,正在从生态学方面进行深入的研究,为解决联合国提出的五大全球性问题等发挥了重要的作用。下面通过生物工程和生态学方面的事例来说明。 在生物工程方面:生物工程(也叫生物技术)例如,在1978年,美国的科学家成功地培育出了能直接生产出能源物质的植物新品种——“石油草”。这种植物的茎秆被割开后,会流出白色乳状的液体,经收集提炼后,就可以得到石油。 在1988年,我国科学家人工合成了抗黄瓜花叶病病毒的基因,并将这种基因导人烟草等作物的细胞,获得了一批抗植物病毒能力很强的作物新类型。 在1989年,我国培育成了转基因鲤鱼。它是将人的生长激素基因导人鲤鱼的受精卵中产生的,其特点是生长速度比非转基因鲤鱼明显加快。 在1992年,我国制成的生物工程乙肝疫苗已批量投放市场。它是采用生物工程的方法,将乙肝病毒中的有关基因分离出来,引入细菌的细胞中,然后采用发酵的方法(或引入哺乳动物的细胞中,再采用细胞培养的方法),就能让细菌(或哺乳动物的细胞)生产出大量的疫苗。这种疫苗和传统的预防乙型肝炎的疫苗相比,优点是生产周期短,产量高和价格较低。 在1995年,我国科学家培育出了抗虫棉。它是将某种细菌的抗虫基因导入棉花中产生的,其优点是抗棉铃虫效果明显(投影:普通棉和抗虫棉)。 在生态学方面:生态学是研究生物与生物之间、生物与无机环境之间相互关系的科学。它要解决的是20世纪60年代以来联合国提出的人类社会面临的人口爆炸、环境污染、资源匾乏、能源短缺和粮食危机等五大问题。 安徽省颖上县小张庄以前的生态环境恶劣,旱涝灾害频繁,农业结构单一、粮食产量很低,贫困落后。从20世纪70年代中期开始,进行了生态农业的建设,使生态环境明显改善。同时,小张庄大力发展养殖业以改良土壤;发展沼气能源,并用沼气池的渣液喂鱼、塘泥肥田,从而使农业生态系统得到了良性循环 科学技术的发展往往是利弊相随。克隆技术本身将为未来的世界带来巨大的变革,甚至会呈现给我们一个崭新的未来,然而,我们在崇尚科学改造世界的同时,却不能不正视克隆技术尤其是克隆人随之带来的对自然、社会及伦理的影响。 克隆对自然、社会和伦理的影响:正是以多利羊的诞生为契机,世界范围内开展开了一场关于克隆技术,尤其是克隆人的自然、社会和伦理影响的大讨论。下面这种观点带有普遍性,即克隆动物是可以的,克隆人是不能允许的。反对克隆人既是出于科学的理由,也是出于伦理学的理由。我们的伦理学应该建立在科学的基础上,并随着科学的进步而发展。只有以克隆形式产生的人比有性生殖更有利于人类的生存和发展,我们才能克隆人。人类社会曾经存在过多种婚姻形式,古代社会的血婚制是近亲结婚的,科学表明,近亲结婚产生的子代基因纯度高,一些致病的隐性基因一旦结合,就会出现遗传的疾病症状,不利于子代的生存。因此,杂交具有遗传优势,现代人普遍禁止近亲结婚。现代的婚姻模式比古代要科学。有性生殖是高等生物区别于低等生物的显着标志。进化史表明,有性生殖明显加速了生物进化的速率,克隆作为无性生殖手段,如果应用于人类,那么必将导致人类基因的纯化,降低人类适应环境变化的能力。根据混沌原理,人类无法完全预测未来的生存环境,一些在特定条件下有很强适应优势的性状在变化了的环境条件下,可能是导致其灭亡的根据,因此,人克隆人不是一种明智的选择。 从技术上看,人类要完全克隆自己也难以实现,这是因为克隆的成功率很低,克隆过程会产生大量的染色体畸变和DNA突变,即产生大量的先天残疾的个体。在自然条件下,具有遗传劣势的个体会遭到无情的淘汰。但对人而言,人道主义的原则,现代的医疗技术,能使这些具有明显遗传劣势的人活下来从而导致人类遗传性的退化。即使人类能成功地克隆自己,也将阻塞人与其他物种共同进化的通路,因为遗传突变是生物进化的源泉。从中国的伦理看,人类从总体上克隆自己与中国人的以血缘纽带关系建立起来的社会价值体系和基本结构形式构成直接冲突。中国人一向以传宗接代、天伦之乐作为人生的首要义务和乐趣,家庭和家族一直是构成社会的最基本单位。克隆人类会导致家庭的解体,人类不求助于异性即可以产生后代,那么两性之间就不再存在子代血缘纽带关系。如果人类仅仅允许部分人克隆自己或为了自己的目的克隆人,那将对人生平等的价值及由此而建立的社会结构形式产生根本性冲击。从理论上讲,克隆能使个体的遗传基因完全的传递给子代,基因从本质上具有同等的生存权和发展权。如果人人都争相克隆,那么谁来决定哪些人可以克隆?克隆人的标准是什么?此外,假设克隆人问世以后,克隆人的身份问题,克隆人的社会地位、权力问题以及克隆人会不会遭到社会的歧视等问题都是摆在人们面前的亟待解决的难题。 克隆对社会观念改变的影响:为了人类的生存和发展,我们确实需要转变观念。我们要转变将传宗接代作为生活首要目的观念,进而要追求生活质量的提高。传宗接代是生物的本能,人类的文明表现在于超越原始本能。一些落后地区,为了传宗接代,往往以换婚、转婚的形式决定子女的命运,导演了一幕幕人间悲剧,并导致人口数量的剧增,给生态系统带来了巨大的压力。城市中受教育程度较高的人群的低生育率,和落后地区的高生育率也不利于人口素质的提高,尤其是一些明显带有遗传疾病的人口大大降低了人群的遗传素质,不利于人类的生存和发展。如果我们以追求生活质量的提高和可持续发展作为我们的价值标准,那么,我们就不难明白以下几点:一是培养疾病基因的后代不仅不利于人类群体的生存,也不利于个人和家庭生活质量的提高;二是一旦后代出现遗传疾病,就必须依靠现代医学手段,借助外源性基因进行治疗以提高生存质量;此外,人类计划建立基因库可保证人类种质资源的多样性,以利于可持续发展。对于个体而言,克隆带来了相同,但对于整个民族而言,克隆并不排斥多样性。因为克隆的是不同的个体,变异的可能性并没有减少,相反,由于科技手段的介入,我们可制造更丰富的多样性。多样性是一种本来的自然状态,自然状态是多样性的。无论是自然界还是人类社会,多样性能够带来天然的极大的稳定性。我们的社会就是由具有各种各样的智慧、素质和体制的人组成,正是这种多样性造成了一种微妙的平衡和互补状态。 从价值取向的角度看,人类不能仅仅把克隆技术当作满足一时需要的手段和工具将其应用到它所能达到的一切领域,而不顾及人类可持续性发展战略。必须注意区分研究和应用之间的界限,科学研究考虑的是符合规律性,而技术的运用必须考虑到符合目的性,即它对人类生存和发展的意义。因为科学技术的发展很容易滋长人的贪得无厌的欲求,而无节制地滥用技术会给人类带来灾难性的后果。只有充分协调好科学价值与社会价值,个体价值与群体价值,暂时价值与长远价值之间的关系,把有利于提高人类生存质量和可持续发展作为我们的价值评判标准,克隆技术本身才会在未来社会发展中发挥出它的巨大潜力。 克隆技术的应用为人类解决人口生存质量和资源缺乏等问题提供了有效的途径和方法,然而,克隆技术本身,尤其是克隆人的负面效应也是显而易见的。因此,我们要把是否有利于人类生存质量的提高和可持续发展作为克隆技术应用的价值标准,使这些高科技术更好地为人类和社会服务
⑧ (2011浦东新区一模)(四)回答下列关于生物工程的问题.德国科学家最近培育出一种可以生产乙肝疫苗的
(1)获得含目的基因DNA的方法一是直接获取,二是人工合成,图中乙肝疫苗基因的获得方法是人工合成.
(2)图中过程c即目的基因与质粒结合,其产物是重组质粒,此过程需要限制酶(一种核酸切割酶,可辨识并切割DNA分子上特定的核苷酸碱基序列)和DNA连接酶酶(将游离末端重新结合形成DNA)的作用.要检测此产物与不含乙肝疫苗基因的细菌质粒是否相同,最简便的方法可以通过PCR来检测,更精确的方法是测定DNA序列.
(3)导入疫苗基因的胡萝卜细胞若要获得愈伤组织,即组织培养,还需在无菌条件下进行培养;若要获得胡萝卜幼苗,需适时调整细胞分裂素和生长素的浓度比例进行诱导.
故答案为:(1)人工合成(逆转录法)
(2)重组质粒 限制酶和DNA连接酶 测定DNA序列
(3)离体(无菌)细胞分裂素和生长素
⑨ 根据你所学的知识,简要举例说明生物学的新进展
1、生物工程在医药方面有着广泛的应用。例如,长期以来,预防乙型肝炎的疫苗是从乙肝病毒携带者的血液中提取和研制的,这样的疫苗生产周期长,产量低,价格昂贵。
现在,采用生物工程的方法,将乙肝病毒中的有关基因分离出来,引人细菌的细胞中,再采用发酵的方法,或者引人哺乳动物的细胞中,再采用细胞培养的方法,就能让细菌或哺乳动物的细胞生产出大量的疫苗。
中国研制的生物工程乙肝疫苗已经在1992年投放市场,在预防乙型肝炎中发挥了重要作用。除乙肝疫苗以外,还有抑制病毒在细胞内增殖的干扰素等多种生物工程药物已经问世。
2、生物工程在农业生产上的应用前景更为诱人,1988年,中国科学家人工合成了抗黄瓜花叶病毒的基因,并且将这种基因导人烟草等作物的细胞中,得到了抵抗病毒能力很强的作物新系,1989年,中国科学家成功地将人的生长激素基因导人鲤鱼的受精卵中,培育成转基因鲤鱼。
3、生物工程在开发能源和环境保护等方面同样有着广泛的应用。知道,煤炭、石油等能源终将枯竭,目前全世界已经面临着能源危机。使用煤炭、石油等能源,还造成严重的环境污染。
因此,科学家们正在努力探索开发新的能源,其中很重要的一个方面就是用生物工程开发生物能源。美国科学家在1978年成功地培育出能直接生产能源物质的植物新品种——“石油草”,这种植物的茎秆被割开后,就会流出白色乳状的液体,经提炼就得到石油。
4、生态学方面生态学是研究生物与其生存环境之间相互关系的科学。20世纪60年代以来,人类社会面临的人口爆炸、环境污染、资源匮乏、能源短缺和粮食危机等问题日益突出。要解决这些问题,都离不开生态学。因此,生态学的研究受到高度重视,并且取得了显着的进展。
(9)如何在植物动物里构建乙肝疫苗扩展阅读:
学科分支:
1、动物学领域
动物学-动物生理学-解剖学-胚胎学-神经生物学-发育生物学-昆虫学-行为学-组织学
2、植物学领域
植物学-植物病理学-藻类学-植物生理学
3、微生物学/免疫学领域
微生物学-免疫学-病毒学
4、生物化学领域
生物化学-蛋白质力学-糖类生化学-脂质生化学-代谢生化学
5、演化及生态学领域
生态学-生物分布学-系统分类学-古生物学-演化论-分类学-演化生物学
6、现代生物技术学领域
生物技术学-基因工程-酵素工程学-生物工程-代谢工程学-基因体学
7、细胞及分子生物学领域
分子生物学- 细胞学-遗传学
8、生物物理领域
生物物理学-结构生物学-生医光电学-医学工程
9、生物医学领域
感染性疾病-毒理学-放射生物学-癌生物学
10、生物信息领域
生物数学-仿生学-系统生物学
11、环境生物学领域
大气生物学-生物地理学-海洋生物学-淡水生物学
参考资料来源:网络-生物科学