导航:首页 > 动物世界 > 如何判断动物的营养

如何判断动物的营养

发布时间:2022-05-15 17:21:55

‘壹’ 分步骤说明,如何评价动植物脂肪的营养

消化率 一种脂肪的消化率与它的熔点有关,含不饱和脂肪酸越多熔点越低,越容易消化。因此,植物油的消化率一般可达到100%。动物脂肪,如牛油、羊油,含饱和脂肪酸多,熔点都在40℃以上,消化率较低,约为80%~90%。
2. 必需脂肪酸含量 植物油中亚油酸和亚麻酸含量比较高,营养价值比动物脂肪高。
3. 脂溶性维生素含量 动物的贮存脂肪几乎不含维生素,但肝脏富含维生素A和D,奶和蛋类的脂肪也富含维生素A和D。植物油富含维生素E。这些脂溶性维生素是维持人体健康所必需的。
脂肪的供给量
脂肪无供给量标准。不同地区由于经济发展水平和饮食习惯的差异,脂肪的实际摄入量有很大差异。我国营养学会建议膳食脂肪供给量不宜超过总能量的30%,其中饱和、单不饱和、多不饱和脂肪酸的比例应为1:1:1。亚油酸提供的能量能达到总能量的1%~2%即可满足人体对必需脂肪酸的需要。

‘贰’ 怎样知道食物链中动物营养等级

基本简介编辑本段回目录
食物链食物链是一种食物路径,食物链以生物种群为单位,联系着群落中的不同物种。

食物链中的能量和营养素在不同生物间传递着,能量在食物链的传递表现为单向传导、逐级递减的特点。

食物链很少包括六个以上的物种,因为传递的能量每经过一阶段或食性层次就会减少一些,所谓“一山不能有二虎”便是这个道理。

生态系统中的生物虽然种类繁多,并且在生态系统分别扮演着不同的角色,根据它们在能量和物质运动中所起的作用,可以归纳为生产者、消费者和分解者三类。
名称来源编辑本段回目录
食物链食物链一词是英国动物学家埃尔顿(C.S.Eiton)于1927年首次提出的。如果一种有毒物质被食物链的低级部分吸收,如被草吸收,虽然浓度很低,不影响草的生长,但兔子吃草后有毒物质很难排泄,当它经常吃草,有毒物质会逐渐在它体内积累,鹰吃大量的兔子,有毒物质会在鹰体内进一步积累。

因此食物链有累积和放大的效应。美国国鸟白头鹰之所以面临灭绝,并不是被人捕杀,而是因为有害化学物质DDT逐步在其体内积累,导致生下的蛋皆是软壳,无法孵化。一个物种灭绝,就会破坏生态系统的平衡,导致其物种数量的变化,因此食物链对环境有非常重要的影响。
链内角色编辑本段回目录
食物链链内关系生产者主要是绿色植物,能用无机物制造营养物质的自养生物,这种功能就是光合作用,也包括一些化能细菌(如硝化细菌),它们同样也能够以无机物合成有机物,生产者在生态系统中的作用是进行初级生产或称为第一性生产,因此它们就是初级生产者或第一性生产者,其产生的生物量称为初级生产量或第一性生产量。生产者的活动是从环境中得到二氧化碳和水,在太阳光能或化学能的作用下合成碳水化合物(以葡萄糖为主)。因此太阳辐射能只有通过生产者,才能不断的输入到生态系统中转化为化学能力即生物能,成为消费者和分解者生命活动中唯一的能源。

消费者属于异养生物,指那些以其他生物或有机物为食的动物,它们直接或间接以植物为食。根据食性不同,可以区分为食草动物和食肉动物两大类。食草动物称为第一级消费者,它们吞食植物而得到自己需要的食物和能量,这一类动物如一些昆虫、鼠类、野猪一直到象。食草动物又可被食肉动物所捕食,这些食肉动物称为第二级消费者,如瓢虫以蚜虫为食,黄鼠狼吃鼠类等,这样,瓢虫和黄鼠狼等又可称为第一级食肉者。又有一些捕食小型食肉动物的大型食肉动物如狐狸、狼、蛇等,称为第三级消费者或第二级食肉者。又有以第二级食肉动物为食物的如狮、虎、豹、鹰、鹫等猛兽猛禽,就是第四级消费者或第三级食肉者。此外,寄生物是特殊的消费者,根据食性可看作是草食动物或食肉动物。但某些寄生植物如桑寄生、槲寄生等,由于能自己制造食物,所以属于生产者。而杂食类消费者是介于食草性动物和食肉性动物之间的类型,既吃植物,又吃动物,如鲤鱼、熊等。人的食物也属于杂食性。这些不同等级的消费者从不同的生物中得到食物,就形成了“营养级”。

‘叁’ 关于营养级的 最高营养级是什麽在一条生物链中,怎么判断最高营养级的动物是第几营养级的

1.指某一食物链中顶级捕食者的所处的营养级即为最高营养级.
2.生产者是第一营养级,按食物链顺序计数,经过几个营养级到达最高营养级,最高营养级就是几级.

‘肆’ 动物体内所含各养分的区别

饲料:动物为了生存,生长,繁衍后代和生产,必须从外界摄取食物,动物的食物称为饲料。
养分:饲料中凡能被动物用以维持生命,生产产品的物质,称为营养物质,简称养分。
ADF:酸性洗涤纤维,评定饲草中纤维类物质的指标之一。
NDF:中性洗涤纤维,将饲料进行中性洗涤剂处理,得到中性洗涤纤维,同样是评定饲草中纤维类物质的指标之一。
概略养分分析法: 常规饲料分析方案,即概略养分分析方案,将饲料中的养分分为六大类。分别为水分、粗蛋白质、粗纤维、粗脂肪、无N浸出物和粗灰分。
纯养分:饲料中最基础的、不可再分的营养物质叫纯养分,包括蛋白质中的AA,脂肪中的脂肪酸,C.H2O中的各种糖、各种矿物元素、维生素等。
粗蛋白质(CP):饲料中一切含N物质的总称,包括饲料非蛋白质含N物,如AA、酶、某些V、尿素、氨、无机含N盐。数值上,CP等于N×6.25。
消化实验:以测定动物对饲料养分的消化能力或饲料养分的可消化性为目的的实验。
代谢能(ME):饲料消化能减去尿能
及消化道可燃气体的能量后剩余的
能量。
维持:是指动物生存过程中的一种基本状态,在这种状态下,成年动物或非生产动物保持体重不变,体内营养素的种类和数量保持恒定,分解代谢和合成代谢处于动态平衡。
饲养标准:根据大量饲养实验结果和动物生产实践的经验总结,对各种特定动物所需要的各种营养物质的定额作出的规定,这种系统的营养定额及有关资料统称为饲养标准,简称“标准”。
必需脂肪酸:凡是体内不能合成,必
需由饲料供给,或能通过体内特定先
体物形成对机体正常机能和健康具有
重要保护作用的脂肪酸称为必需脂肪
酸。通常将亚油酸,亚麻油酸,花生
四烯酸称为必需脂肪酸。
常量元素: 动物机体内含量大于或等于0.01%的元素.
缩合反应(美拉德反应): 还原性糖的羟基与蛋白质或游离碳的氨基之间的缩合反应产生褐色的反应.
短期优饲: 生产上常常为配种前的母猪提供较高的能量水平的饲粮以及促进排卵的方法.
热增耗(HI):绝食动物在采食饲料后短时间内,体内产热高于绝食代谢产热的那部分热能。
碳水化合物:多羟基的醛、酮或其简单衍生物以及能水解产生上述产物的化合物的总称。
粗纤维(CF): 粗纤维是植物细胞壁的主要组成成分,包括纤维素,半纤维素,木质素和角质等成分.
粗灰分:饲料完全燃烧后的残渣,主要是矿物元素及其盐类,有时有少量泥砂。
粗脂肪(EE):所有脂溶性物质叫粗脂肪,用乙醚浸提,又叫醚浸出物,包括真脂肪及其他脂溶性物质。
纯和日粮: 指配制饲料时不用天然饲料,所有成分都是由纯的营养素组成.
抗营养物质:指饲料本身含有,或从外界进入饲料中的阻碍养分消化的微量成分。
代谢水:代谢水是动物体细胞中有机物质氧化分解或合成过程中所产生的水,又称氧化水;其量在大多数动物中约占总摄水量的5%~10%。
蛋白质:氨基酸的聚合物。由于组成蛋白质的氨基酸的数量、种类和排列顺序不用而形成了各种各样的蛋白质。
蛋白质的周转代谢:动物体内,老组织不断更新,被更新的组织蛋白降解为氨基酸,而又重新用于合成组织蛋白质的过程称为蛋白质的周转代谢。
必需氨基酸:指动物自身不能合成或合成的量不能满足动物的需要,必须由饲粮提供的氨基酸。
氨基酸缺乏:一般在低蛋白质饲粮情况下,可能有一种或者几种必需氨基酸含量不能满足动物的需要的情况,称之为氨基酸缺乏。
氨基酸中毒:饲料中某一种氨基酸的含量超过需要量以后会引起动物的毒性反应,这种现象称为氨基酸中毒。
氨基酸拮抗:当饲料中的某一种氨基酸远远地超过需要量会引起另一种氨基酸吸收下降或排出增加,这种现象称为氨基酸的拮抗。
RDP:瘤胃降解蛋白,为瘤胃微生物所降解的蛋白质,80-100%可合成菌体蛋白。
UDP:瘤胃未降解蛋白,又称过瘤胃蛋白。
有效氨基酸:针对可消化、可利用氨基酸的总称,有时也特指用化学方法测定的氨基酸,或者用生物法测定的饲料中的可利用氨基酸。
真可利用氨基酸:在回肠末端测得的可以被动物消化吸收并利用的氨基酸。
半必需氨基酸:指在一定条件下能代
替或节省部分必需氨基酸的氨基酸。
条件性必需氨基酸:条件性必需氨基酸则是指在特定的情况下,必须由饲粮提供的氨基酸。
非必需氨基酸:非必需氨基酸是指可不由饲粮提供,动物体内的合成完全可以满足需要的氨基酸,并不是指动物在生长和维持生命的过程中不需要这些氨基酸。
限制性氨基酸:指一定饲料或饲粮所含必需氨基酸的量与动物所需的蛋白质必需氨基酸的量相比,比值偏低的氨基酸。
BV:蛋白质的生物学价值,指动物利用的氮占吸收的氮的百分比。BV值愈高说明蛋白质的质量愈好。
净蛋白利用率:指动物体内沉积的蛋
白质或氮占食入的蛋白质或氮的百
分比。
可消化氨基酸:指食入的饲料蛋白质
经消化后被吸收的氨基酸。
可利用氨基酸:指食入蛋白质中能够被动物消化吸收并可用于蛋白质合成的氨基酸。
理想蛋白质:指该蛋白质的氨基酸在组成和比例上与动物所需的蛋白质的氨基酸的组成和比例一致,包括必需氨基酸之间以及必需氨基酸和非必需氨基酸之间的组成和比例,动物对该种蛋白质的利用率应100%。
碳水化合物:多羟基的醛、酮或其简单衍生物以及能水解产生上述产物的化合物的总称。
半纤维素:是木糖、阿拉伯糖、半乳糖和其他碳水化合物的聚合物,含有大量的β-糖苷键。与木质素以共价键结合后就很难溶于水。
非淀粉多糖(NSP):主要是由纤维素、半纤维素、果胶和抗性淀粉组成。可分为不溶性NSP和可溶性NSP。其中可溶性NSP具有较大的抗营养作用。
脂类的额外能量效应:禽饲料添加
一定水平的油脂替代等能值的碳水
化合物和蛋白质,能提高饲料代谢
能,使消化过程中能量消耗减少,
热增耗减少,是饲料的净能增加,
当植物油和动物脂肪同时添加时效
果更明显,这种效应称为 脂类的
额外能量效应。
必需脂肪酸:凡是体内不能合成,
必需由饲料供给,或能通过体内
特定先体物形成对机体正常机能
和健康具有重要保护作用的脂肪
酸称为必需脂肪酸。通常将亚油
酸,亚麻油酸,花生四烯酸称为
必需脂肪酸。
多不饱和脂肪酸:通常将具有两
个或两个以上双键的脂肪酸称为
高度不饱和或多不饱和脂肪酸。
脂肪酸氢化:在催化剂或酶的作
用下不饱和脂肪酸的双键可以得
到氢而变成饱和脂肪酸,使脂肪
硬度增加,不易氧化酸败,有利
于贮存,但也损失了必需脂肪酸。
有效能:饲料中的能量不能完全
被动物利用,其中,可被动物利
用的能量称为有效能。
能值:饲料中的有效能含量 即
反映了饲料能量的营养价值。
总能(GE):饲料中有机物质完
全氧化燃烧生成二氧化碳,水和
其他氧化物时释放的全部量,主
要为碳水化合物,粗脂肪和粗蛋
白质能量的总和。
消化能(DE):饲料可消化养分
所含的能量,即动物摄入饲料的
总能与粪能之差。即:DE=GE-FE
表观消化能(ADE):粪能中未扣除代谢粪能计算的消化能。
真消化能(TDE):粪能中扣除代谢粪能后计算的消化能。TDE=GE-(FE-FmE)
代谢粪能(FmE):消化道微生物及其代谢产物,消化道分泌物和经消化道排泄的代谢产物和消化道粘膜脱落细胞之和。
代谢能(ME):饲料消化能减去尿能
及消化道可燃气体的能量后剩余的
能量。
尿能(UE):是尿中有机物所含的总能,主要来自于蛋白质的代谢产物,如尿素尿酸等。
内源尿能(UeE):尿中能量除来自饲料养分吸收后在体内代谢分解的产物外,还有部分来自于体内蛋白质动员分解的产物,后者称为内源氮,其所含能量称为内源尿能。
氮校正代谢能(MEn):是根据体内氮
沉积进行校正后的代谢能,主要用于
家禽。
净能(NE):饲料中用于动物维持生命和生产产品的能量,即饲料的代谢能扣去饲料在体内的热增耗。
热增耗(HI):绝食动物在采食饲料后短时间内,体内产热高于绝食代谢产热的那部分热能。
维持净能(NEm):饲料能量用于维持生命活动,适度随意运动和维持体温恒定部分。这部分能量最终以热的形式散失掉。
生长净能(NEp):饲料能量用于沉积到产品中的部分,也包括用于劳役做功的能量。
能量总效率:指动物产品中所含的能
量与摄入饲料的有效能之比。
基础代谢:指健康正常的动物在适温环境条件下、处于空腹、绝对安静及放松状态时,维持自身生存所必要的最低限度的能量代谢。
绝食代谢:指动物绝食到一定时间,达到空腹条件时所测得的能量代谢叫绝食代谢。
内源尿氮(EUN):动物在维持生存过程中,必要的最低限度体蛋白质净分解代谢经尿中排出的氮。
代谢粪氮(MFN):采食无氮日粮后,从粪中排出的数量稳定的氮。
体表氮损失:是指动物在基础氮代谢下,经皮肤表面损失的氮。
NPN,即非蛋白氮,动植物体内的NPN包括游离氨基酸、酰胺类、含氮的糖苷和脂肪、铵盐等。
脂类在动物营养生理中的其他作用。
答:①作为脂溶性营养素的溶剂;②脂类的防护作用,例如:皮下脂肪的抗微生物侵袭,保暖作用,水禽尾脂腺的抗湿作用;③脂类是代谢水的重要来源;④磷脂的乳化特性,有利于提高饲料中脂肪和脂溶性营养物质的消化率;⑤胆固醇,有助于甲壳动物转化合成维生素D,性激素,胆酸,蜕皮素和维持细胞膜结构的完整性;⑥脂类也是动物体必需脂肪酸的来源。
什么是寡糖? 寡糖的生理机制?
寡糖:又称低聚糖,是由2至10个塘单位构成的糖类物质.寡糖的主要作用:
1.促进动物肠道内健康微生物菌相的形成;
2.可结合,吸收外源性病原菌和调节物体内的免疫系统.
简述如何提高饲料蛋白质利用效率。
答:1)配制饲料时,应注意日粮的组成,如猪、禽等应控制粗纤维的含量;2)配制饲粮时,应注意能氮平衡,高能低氮,高氮低能都会影响蛋白质的利用率;3)配制饲料时,应注意蛋白质的种类数量及蛋白质中各种氨基酸的配比;4)对饲料进行碾碎、发酵、青贮等调制与加工,增加饲料的适口性,提高消化率,从而提高蛋白质的消化率;5)某些饲料应经过特殊处理以消除其中的抗营养因子;6)可在日粮中补充少量合成氨基酸,以使日粮全价性和氨基酸平衡。
猪、禽饲料最常见的第一限制性氨基酸各是什么?
答:猪饲料的第一限制性氨基酸:赖氨酸;禽饲料的第一限制性氨基酸:蛋氨酸。
单胃动物的理想蛋白原理是什么?
答:理想蛋白:指该蛋白质的氨基酸在组成和比例上与动物所需的蛋白质的氨基酸的组成和比例一致,包括必需氨基酸之间以及必需氨基酸和非必需氨基酸之间的组成和比例,动物对该种蛋白质的利用率应100%。
单胃动物的理想蛋白的实质是什么?
答:理想蛋白实质是将动物所需蛋白质氨基酸的组成和比例作为评定蛋白质质量的标准,并将其用于评定动物对蛋白质和氨基酸的需要。
单胃动物的理想蛋白的意义。
答:理想蛋白质的意义:a 确定动物的氨基酸需要量 b 指导饲料配制,合理利用饲料资源 c 可用于评定饲料的营养价值 d 实现饲粮低蛋白,降低成本,减少氮排泄。
NPN的合理利用措施有哪些?
答:合理利用措施:1) 延缓NPN的分解速度 包括a 采用包被技术 b 使用脲酶抑制剂抑制活性 2)增加微生物的合成能力,提供充足的可溶性碳水化合物,提供足够的矿物元素3)正确的使用技术:a 用量不超过总氮的1/3,b 不超过饲粮干物质的1%,不超过精料补充料的3% 4)避免水中饲喂,不能同时使用含脲酶活性高的饲料,制成添砖,尿素青贮。
什么叫限制性氨基酸?
答:限制性氨基酸:指一定饲料或饲粮所含必需氨基酸的量与动物所需的蛋白质必需氨基酸的量相比,比值偏低的氨基酸。
第一限制性氨基酸在蛋白质营养中有何意义?
答:由于这些限制性氨基酸的不足,限制了动物对其他必需和非必需氨基酸的利用。生产实践中,饲料或饲粮限制性氨基酸的顺序可指导饲粮氨基酸和合成氨基酸的添加。
简述瘤胃内环境稳定的含义。
答:瘤胃内环境的稳定包括以下几点,瘤胃的营养环境稳定,瘤胃的水代谢稳定,保持相对稳定的水含量,瘤胃pH较稳定,变动在5.5-7.5间,瘤胃温度稳定,一般维持在38.5-40℃间,瘤胃的厌氧环境稳定。
简述瘤胃内环境稳定的营养生理意义。
答:瘤胃的营养环境稳定,日粮中的营养物质连续稳定地进入瘤胃,为微生物活动建立了合适的营养环境;瘤胃内相对稳定的含水量,是微生物活动所必需的条件;瘤胃pH对微生物活动的影响较大,不同微生物各有其适宜的pH,瘤胃PH通过大量分泌唾液来调节,而唾液分泌量取决于反刍的持续时间,影响反刍的主要因素是日粮中粗料的比例。因此日粮组成对瘤胃pH的影响最为突出;瘤胃的厌氧环境和相对稳定的温度对维持瘤胃微生物区系的稳定和功能极为重要。
反刍动物对碳水化合物消化、吸收特点。
答:反刍动物对碳水化合物的消化和吸收,1、是以粗纤维形成的挥发性脂肪酸为主,以淀粉形成的葡萄糖为辅,主要消化部位在瘤胃,小肠、盲肠、结肠为辅。2、碳水化合物在前胃的消化过程是微生物不断分解纤维分解酶分解纤维的一个连续循环的过程;碳水化合物水解产生的单糖经主动转运吸收入细胞;它在瘤胃中降解为挥发性脂肪酸即丁酸、丙酸和乙酸,通过扩散进入体内。丁酸和乙酸发酵产生的氢,用于合成甲烷,通过嗳气排出体外,其能量损失较大。
猪对碳水化合物消化、吸收特点。
答:猪对碳水化合物的消化和吸收,1、是以淀粉形成的葡萄糖为主,以粗纤维形成的挥发性脂肪酸为辅,主要消化部位在小肠。2、营养性的碳水化合物的消化和吸收主要是在消化道的前端即口腔到回肠末端;结构性的碳水化合物的消化和吸收主要是在消化道的后端即回肠末端以后。3、进入肠后段的碳水化合物以结构多糖为主,也包括未消化完的营养性碳水化合物,由微生物发酵分解,主要产物是挥发性脂肪酸、甲烷、二氧化碳。部分挥发性脂肪酸由肠壁进入体内,而气体则由肛门排出。
NPN的利用原理是什么?
答:利用原理:反刍动物:尿素→ NH3+CO2 CH2O →VFA+酮酸 NH3+酮酸 →AA →菌体蛋白
简述影响蛋白质消化、吸收、沉积的因素。
答:影响蛋白质消化吸收沉积的因素包括动物的种类和年龄,饲料组成及抗营养因子,饲料加工贮存中的热损害等。1)动物因素:A 动物种类 对同一种饲料蛋白质的消化吸收沉积,不同的动物之间存在一定的差异,这是由于动物各自消化生理特点的不同所致。B 年龄 随着动物年龄的增加,其消化道功能不断完善,对石如蛋白的消化率也得到相应提高。2)饲粮因素:A 纤维水平 纤维物质对饲粮蛋白质的消化、吸收都有阻碍作用,随着纤维水平的增加,蛋白质在消化道中的排空速度也增加,这无疑降低了其被酶作用的时间及被肠道吸收的几率。B 蛋白酶抑制因子 一些饲料中含有多种蛋白酶抑制因子,其中主要是胰蛋白酶抑制因子,能降低胰蛋白酶的活性,从而降低蛋白质的消化率。3) 热损害:对大豆等饲料进行适当的热处理,能消除其中的抗营养因子,也能使蛋白质初步变性,有利于消化吸收。但温度过高或时间过长,则有损蛋白质的营养价值。4)日粮蛋白质种类与水平(底物诱导效应)。5)日粮矿物元素水平(酶激活剂)。
简述纤维的营养生理作用。
答:优点1、填充消化道,产生饱食感。2、解毒作用。3、刺激胃肠道发育,维持正常的蠕动。4、提供一定的能量。5、改善胴体品质,提高瘦肉率。缺点1、适口性差,减少动物的采食量。2、影响能量的利用率。3、消化率低,并影响其他养分的消化。
简述NSP的营养特性。
答:可分为不溶性NSP即纤维素等和可溶性NSP即β-葡聚糖等。
纤维素其具有填充消化道,产生饱食感;激胃肠道发育,维持正常的蠕动等营养生理特性,能够被反刍动物所利用,单胃动物利用较少。β-葡聚糖其具有较大的负面营养特性,其利用率很低。
简述NSP的负面营养特性及克服措施。
答:可溶性NSP即β-葡聚糖,同时含有阿拉伯木聚糖。它们与水分子直接作用增加溶液的粘度,且随着多糖的浓度的增加而增加;在动物的消化道内使食糜变黏,进而阻止养分接近肠黏膜表面,最终降低养分的利用率。动物又缺乏该种对应的内源酶对其进行降解。克服方法是加入特异的对应的酶类。
何谓脂类的额外能量效应?
答:禽饲料添加一定水平的油脂替代等能值的碳水化合物和蛋白质,能提高饲料代谢能,使消化过程中能量消耗减少,热增耗减少,是饲料的净能增加,当植物油和动物脂肪同时添加时效果更明显,这种效应称为 脂类的额外能量效应。
额外能量效应可能的机制是什么?
答:其可能的机制是:①饱和脂肪酸和不饱和脂肪酸之间的协同作用;②脂肪能适当延长食糜在消化道的停留时间;③脂肪酸可直接沉积在体脂内,减少由饲粮碳水化合物合成体脂的能量消耗;④脂肪的抗饥饿作用使动物用于活动的维持需要减少,用于生产的净能增加;⑤添加脂肪能增加日粮适口性,因此有更高的能量进食量,能提高动物的生产性能。
NSP的概念。
答:非淀粉多糖(NSP):主要是由纤维素、半纤维素、果胶和抗性淀粉组成。可分为不溶性NSP和可溶性NSP。其中可溶性NSP具有较大的抗营养作用。
必需脂肪酸的生物作用是什么?
答:①必需脂肪酸是细胞膜,线粒体膜和质膜等生物膜的主要成分,在绝大多数膜的特性中起关键作用,也参与磷脂的合成;②必需脂肪酸是合成二十烷的前体物质;③必需脂肪酸能维持皮肤和其他组织对水分的不通透性;④必需脂肪酸能降低血液中胆固醇水平。
脂类在动物营养生理中的其他作用。
答:①作为脂溶性营养素的溶剂;②脂类的防护作用,例如:皮下脂肪的抗微生物侵袭,保暖作用,水禽尾脂腺的抗湿作用;③脂类是代谢水的重要来源;④磷脂的乳化特性,有利于提高饲料中脂肪和脂溶性营养物质的消化率;⑤胆固醇,有助于甲壳动物转化合成维生素D,性激素,胆酸,蜕皮素和维持细胞膜结构的完整性;⑥脂类也是动物体必需脂肪酸的来源。
比较反刍动物和非反刍动物脂肪类消化,吸收和代谢的异同
答:非反刍动物和反刍动物脂肪类消化、吸收的差异主要在反刍动物的瘤胃消化和吸收上。1.在反刍动物瘤胃中大部分不饱和脂肪酸经微生物作用变成饱和脂肪酸,必需脂肪减少。2.部分氢化的不饱和脂肪酸发生异构变化。3.脂类中的甘油被大量转化为挥发性脂肪酸。4.瘤胃微生物可利用丙酸、戊酸等合成奇数碳原子链,因此其支链脂肪酸和奇数碳原子脂肪酸增加。
在小肠中消化的不同点:由于脂类中的甘油在瘤胃中被大量转化为挥发性脂肪酸,反刍动物十二指肠中缺乏甘油一酯,并且其小肠中不吸收甘油一酯,其粘膜细胞中甘油三酯通过磷酸甘油途径重新合成。反刍动物的脂肪吸收量可能大于其摄入量。反刍动物脂类的吸收:瘤胃中产生的短链脂肪酸只有通过瘤胃壁吸收。
热增耗(HI)、TMEn的概念?
答:热增耗(HI):绝食动物在采食饲料后短时间内,体内产热高于绝食代谢产热的那部分热能。
TMEn的概念?
答:TMEn:根据体内氮沉积进行校正后的真代谢能。
描述能量在动物体内的代谢过程。
答:动物采食饲料后,三大养分经消化吸收进入体内,在糖酵解,三羧酸循环或氧化磷酸化过程可释放能量,最终以ATP的形式满足机体的需要。
简述提高饲料能量利用率的措施。
答:(1)根据动物种类,性别,及年龄来配制日粮配方 (2)对于不同动物的不同生产目的,改变日粮中能量含量。一般来说维持>产奶>生长,育肥>妊娠和产毛 (3)在适宜的饲养水平范围内,随着饲喂水品的提高,饲料有效能量用于维持部分相对减少,用于生产的净能效率增加。(4)饲料中的营养促进剂,如抗菌素,激素等也影响动物对饲料有效能的利用。
简述能量的作用及来源。
答:能量可定义为做功的能力。动物的所有活动,如呼吸,心跳,血液循环,肌肉活动,神经活动,生长,生产产品和使役等都需要能量。动物所需的能量主要来自饲料三大养分中的化学能。
饲粮氨基酸的平衡?
1.体内蛋白质合成时,要求所有的必须氨基酸都存在,并保持一定的相互比例.
2.若目中饲料的EAA的相互比例与动物的需要相比最接近,说明该饲料的氨基端是平衡的,反之,则为不平衡.
粗纤维的生理作用:反刍动物:维持瘤胃的正常功能和动物的健康.维持动物正常的生产性能.为动物提供大量能源.
非反刍动物:维持肠胃正常蠕动.提供能量.饲粮纤维的代谢效应.解毒作用.改善胴体品质.刺激肠胃道发育.
脂肪的营养生理作用:脂类的供能贮能作用.(脂类是动物体内重要的能源物质.脂类的野外能量效应.脂肪是动物体内主要的能量贮备形式.)脂类在体内物质合成中的作用.脂类在动物营养中的其他的作用.(作为脂溶性营养素的溶剂.脂类的防护作用.脂类是代谢水的重要来源.磷脂肪的乳化特性.胆固醇的生理作用.脂类也是动物必需脂肪酸的来源.动能物质的组成成分.)
简述单胃动物和反刍动物对蛋白质消化吸收的异同。
答:一.单胃动物:1.消化酶,单胃动物的蛋白质消化在胃和小肠上部进行,主要靠酶消化。消化酶有三个来源:胃粘膜、肠粘膜和胰腺。
2.消化过程,从胃中开始消化,天然蛋白不能被消化酶消化,因其特异有序的立体结构可阻止消化酶的作用,蛋白质变性后可使有顺变无序,增加对酶的敏感性。HCl和加热可使蛋白质变性,HCl处理变性后对胃蛋白酶更敏感。未消化蛋白质进入大肠,在微生物作用下分解为AA,N及其他含N物质,大部分不能被利用。
3.吸收,AA的吸收主要在小肠上部完成,为主动吸收,VB6可提高正常AA的转运,有三个转运系统分别转运碱性、酸性和中性AA,三个系统各有不同载体:同一类AA之间有竞争作用,但不影响另一类AA吸收。各AA吸收速度顺序为:L-AA高于D-AA。
二.反刍动物:反刍动物对饲料蛋白质的消化约70%在瘤胃受微生物作用而分解,30%在肠道分解。
反刍动物小肠消化与单胃动物不同之处。
(1)代谢N相对于饲料N的比例高于单胃动物,特别是日粮蛋白质缺乏时。
(2)食物流入十二指肠的中和率慢于单胃动物。
(3)胰蛋白酶的激活和活性高峰在空肠中段才能达到(单胃动物在十二指肠)。
(4)胰液中核酸酶活性高,可能与微生物中核酸含量高有关,进入十二指肠食糜的微生物蛋白和未解日粮蛋白的比例与蛋白质种类有关,约蛋白质和非蛋白质氮,构成微生物蛋白质,然后又被消化分解为氨基酸,供动物肌体吸收利用。
缺钙磷:食欲降低,异食癖;生长缓慢,饲料利用率下降;佝偻病,骨质疏松,产后贪婪.
缺镁:厌食,生长受阻,过度兴奋,痉挛和肌肉抽搐.
缺钠钾氯:食欲差,生长慢,失重,生产力下降,饲料利用率低。
缺硫:消瘦,脚、蹄、爪、羽毛生长慢,反刍动物利用纤维素的能量力降低,采食量下降。
缺铁:贫血,生长慢,昏睡,可视粘膜变白,呼吸频率增加。
缺锌:食欲低,采食量和生产性能下降,皮肤和皮毛损害,雄性生殖器发育不良,牧畜繁殖性能降低和骨骼异常。
缺铜:贫血
缺锰:采食量下降,生长减慢,饲料利用率下降,骨骼异常。共济失调和繁殖功能异常。
缺硒:繁殖性能低,猪,鼠出现肝坏死,鸡出现渗出性素质和胰腺纤维变性,牛羊出现白肌病或肌肉营养不良。
缺碘:甲状腺肿大,生长受阻,繁殖力下降。
碳水化合物的营养生理作用:碳水化合物的供能和贮能作用,碳水化合物在动物产品形成中的作用.有些寡糖的生理作用,动物体内糖苷的作用,,结构性碳水化合物的营养生理作用,糖蛋白质,糖脂的生理作用..
碳水化合物的代谢:非反刍动物的碳水化合物代谢.单糖互变.葡萄糖分解代谢,葡萄糖参与的合成代谢,反刍动物的碳水化合物代谢,糖原异生.挥发性脂肪酸代谢.

‘伍’ 宠物营养不良的表现有哪些

如果宠物还在长身体的话,那么注意观察一下宠物是否出现了O型腿或者X型腿。如果宠物有这样的症状的话,那么宠物就是营养不良。我家狗就曾经出现过O型腿,然后我奶奶每天喂狗一片我日常吃的钙片,不到一个星期,狗狗的腿就好了。

注意观察一下宠物的毛发是否有光泽,是否粗糙,如果宠物毛发没有光泽,表面粗糙,那么宠物就是营养不良。

还可以观察一下宠物是否有奇怪的举动。之前我家的猫经常去草坪上吃草,我有些担心它,于是就带它去医院检查了一下,医生就说它这是营养不良,让我注意给它合理膳食。

‘陆’ 动物食物来源及营养级研究

不管是调查动物的食物来源,还是调查其所在生态系统中的营养级位置,传统方法都是通过直接观察、胃容物分析、食物残留物分析及其粪便分析等来实现。但传统方法所获得的信息极其有限。首先,通过直接在显微镜下解剖和观察的结果就对动物的摄食情况作出判断,其结果难以反映动物长期的摄食情况,存在一定的偶然性,因此,数据只能反映动物最近取食情况,很难调查动物的长期食性变化;其次,数据只能反映表面现象,对于有些食物,动物虽然采食了,但并没有被消化吸收,调查的资料与动物长期依赖的主要食物可能有很大偏差;再者,传统的分析方法虽对大中型动物的可操作性较好,但对一些小型动物(昆虫和土壤动物)的食性分析难度较大,并且这种方法对动物伤害比较严重、调查时间长、劳动强度大,在应用时存在很大的局限性(王建柱,2004)。

与传统技术相比,稳定性同位素技术的主要优点在于样品采集对研究的生态系统影响非常小,同时也能更好地反映生态系统中物质循环和能量流动以及生物与生物、生物与环境间的中长时间尺度的变化。通过动物组织的稳定同位素组成来确定其食性和食物来源,所得到的数据反映的是生物长期生命活动的结果,较消化道内含物分析等传统方法稳定准确。

动物不但对其栖息环境中植物同位素组成具有继承性,而且还整合了较长时间段内动物所采食的所有食物同位素组成的综合特征。同时,不同生态系统或同一生态系统中不同植物间都存在明显的同位素组成差异,使我们可以利用这些同位素组成的差异研究动物食物的主要来源,还可以计算出每种食物(有多种食物来源的动物)在整体食物中所占的比例,分析动物所处的营养级位置,划分复杂食物网及群落结构等(王建柱,2004)。

1.动物的食物来源

动物组织的同位素组成总是与其生活环境中所食植物组织的同位素组成相一致。当动物的栖息环境发生变化或动物迁移到一个新的生境中时,动物组织的同位素组成又会向新环境中的同位素特征转变。这样,动物组织的同位素组成就能真实地反映一段时期内动物的食物来源和栖息环境的变化(赵威,2008)。

近年来,稳定同位素方法因其在调查动物食物来源方面优势显着,已得到越来越广泛的应用。例如,Romanek等(2001)利用稳定同位素(δ13C和δ15N)调查林鹤(Mycteria americana)的觅食活动,发现林鹤的食物主要以淡水生物为主。尽管生活环境中盐水生物丰富且更易捕获,但林鹤更喜欢用淡水食物来饲养它们后代,这一结果也得到用航空示踪器所调查的结果证实(王建柱,2004)。

魏明瑞等(2002)研究3种植食性哺乳动物牙齿碳同位素的结果表明,被测试的动物以碳同位素值为-20.7‰~-25.3‰的C3植物作为主要食物来源,同时他们又通过对动物的牙齿形状分析,发现动物的低冠齿所指示的食性支持了牙齿釉质的碳稳定同位素所指示的食性。

稳定同位素也可用来研究动物食物的季节性变化。Ben-David等(1997)分析了貂鼠(Martesa-mericana)及其可能的食物(鹿尸、田鼠、松鼠、野鼠类、蟹和鲑鱼)的δ13C和δ15N值,结果表明,虽然貂鼠有多种猎物,但貂鼠(血细胞和肌肉)的同位素特征与野鼠类的种群数量有相似的季节性变化和年变化,说明貂鼠更喜食野鼠类。尽管其他食物(如鲑鱼)常年都可捕食,只有当野鼠类的数量不足时,貂鼠才食用这些食物。Darimont和Reimchen(2002)用同样的方法调查了灰狼(Canis lupus)食物季节性变化,随着每年夏季鲑鱼(Onchorynchus spp.)的迁移到来,灰狼的食物也发生了明显改变。

用稳定同位素技术分析已经灭绝的或用常规方法难以测定的大型珍稀动物的食物来源情况,更显现出其他方法难以替代的优势。Cerling等(1999)对生活在草原和森林环境中的稀有大象的食性进行了分析,结果显示大象的同位素组成和其生活环境的植物的同位素组成很接近,说明大象为草食性动物。Hilderbrand等(1996)也对灭绝的穴居熊和棕熊骨骼的碳氮同位素进行了分析,结果与以前研究的不同,指出穴居熊不仅不是草食动物,而且它所利用的食物中肉类占41%~78%。由此可见,稳定同位素可以标记动物的食物来源。对于那些已灭绝的动物(穴居熊)或大型珍稀动物(大象),稳定同位素是研究它们的食物来源及其生活环境变迁的理想工具。另外,对于体型非常小的土壤动物、昆虫以及水生无脊椎动物,用传统方法确定它们的食物来源及食性十分困难,稳定同位素技术为解决这一难题提供了有力工具(王建柱,2004)。

2.动物食物成分的估算

对草食动物食物成分的估算,可以按下式进行:

同位素地球化学

式中:δ13CSA为动物食物的δ13C值;δ13CG为C3植物的δ13C平均值;δ13CCW为C4植物的δ13C平均值;PW为C4植物对草食动物食物的贡献率。利用该公式,可相对定量算出C3植物和C4植物在动物食物中的比例,也可以应用于较高的营养级,以估算C3和C4两种营养源在食物链间的传递。

对食肉动物食物成分的估算,一般以下面方法进行,同时这也适用于食草动物。首先对食肉动物的δ13C和δ15N值进行校正。在食肉动物肌肉或整体的同位素测定值基础上,δ13C和δ15N值分别降低2和3(M.Ben-David,1996;G.V.Hilderbrand,1996);对于虫草杂食性动物来说,δ13C和δ15N值应分别降低1和2(B.R.Forsberg,1993)。这个下降幅度(食物与组织间的分馏效应)也可以由系统中两种稳定性同位素的富集因子来替代。进一步利用双同位素多元混合模型(al-isotope multiple-source mixing mode1)估算食物Ai在动物食物中所占的比例FCRi。食物比例FCRi值可以由Ben-David(1997)等方法转换得到:

同位素地球化学

式中:ZAi是校正后动物的同位素值与食物Ai的同位素值之间的欧氏距离,由下式来计算:Z= 其中,x表示动物和各食物成分的δ13C值之差,y表示动物和各食物成分的δ15N值之差。Z值越小,说明该食物成分在动物食物中所占的比例越大。需要说明的是,在使用欧氏距离模型和其他有关同位素技术定量食性的模型时一个重要的前提就是,各食物资源的碳和氮同位素之间应存在显着性差异。欧氏距离模型有时会低估那些取食较多的食物种类,也会高估某些取食比例较低的食物资源,所以也是一个相对的食物比例,而非绝对的取食比例(易现峰,2005)。

当生物有两种食物来源并且两种食物来源的同位素组成不同时,可采用以下公式评价每种食物来源在消费者食性中所占比重(以碳同位素为例):

同位素地球化学

式中:Kcarbon为食物A对消费者的贡献比例;δ13CA和δ13CB分别为食物A和B的碳同位素组成;Δ13C为不同营养级间碳同位素相对富集系数;δ13Cconsumer为消费者的碳同位素组成。Knitron的计算公式形同Kcarbon

此外,L.Saito等(2001)还提出另外一种估算动物食物成分的方法,针对有多种(两种或两种以上)食物来源的动物,通过下述同位素质量平衡方程(isotope mass balance equation)(式18-18至式18-20)确定不同食物在动物食物中所占比例。方程如下:

同位素地球化学

式中:δ13Ci和δ15Ni分别是消费者的C和N同位素组成;δ13Cj和δ15Nj分别为食物的C和N同位素组成;ΔC和ΔN分别为C和N同位素分馏值;fij是不同食物在整体食物中所占比例;n代表消费者全部食物种类。

自碳同位素应用于动物的食性研究以来,迄今为止,已有不少关于动物食物成分估算的研究报道。Ostrom等(1997)用C和N同位素对农业生态系统中植物(小麦、玉米和苜蓿)-蚜虫-瓢虫(Hippodamia variegata)间能量流动进行了研究,运用上述同位素质量平衡方程计算瓢虫的食物组成,结果显示,在5月份,瓢虫的食物有32%来自苜蓿,有68%来自玉米,到了8月份,其食物组成为苜蓿52%、小麦6%和玉米42%。

Cormie和Schwarcz(1996)在研究北美白尾鹿(Odocoileus virginianus)食物组成时发现,即使在干季,草原上C4植物占优势,而北美白尾鹿还是很少食用C4植物(<10%)。此外,Ramsay和Hobson(1991)对北极熊(Ursus maritimeus)骨骼、肌肉和脂肪组织δ13C分析时发现,虽然北极熊一年有1/3时间活动在陆地上,但它几乎不食用陆生食物。

Boutton等(1983)用碳同位素分析了东非草原上白蚁(Macrotermes michaelseni)的食物成分,并分别求出在Kajiado和Ruiru的白蚁食物中C4植物约占70%和64%。此外,Magnusson等(1999)在亚马孙中部的热带稀树草原上研究了C3、C4植物对不同动物食物的贡献,分别计算出C3、C4植物在多种动物食物中所占的比例。如蝗虫(Tropidacris collaris)食物中C3植物约占90%,两种切叶蚁(Acromyrmex latticeps nigrosetosus和Atta laevigata)食物中C3植物约占70%;两种白蚁(Syntermes mo-lestus和Nasutitermes sp.)主要以C4植物为食,而以白蚁为食的青蛙和蜥蜴有超过50%食物源于C4植物;杂食啮齿动物(Bolomys lasiurus)大约有60%食物来自C3植物。

值得注意的是,在调查动物食物来源和不同食物在其食物中所占比例时,各食物的同位素组成必须有明显的差异(王建柱,2004),而且还应注意“同位素印迹(isotopic routing)”的现象(H.P.Schwarcz,1991),也就是同位素组成不同的食物在进入动物组织时,并不是先进行充分混合,然后平均分配到动物的不同组织或组织的不同组分中去,而是不同食物会直接进入动物的特定组织或部位(L.L.Tieszen,1983)。虽然“同位素印迹”现象还没有得到更多的研究确认,但有研究表明同位素印迹现象确实存在(L.Z.Gannes,1998;S.Bearhop,2002)。这可能导致动物组织并不能反映其整体的食物组成,也使得利用动物组织同位素组成来研究动物食物来源变得更为复杂(王建柱,2004)。要使动物组织同位素组成能更准确地反映其食物组成,还需要更深入地研究动物组织的同位素组成与其食物成分同位素组成间的关系,特别是当动物食物发生转变时,动物组织同位素组成的动态平衡特征的变化(McCutchan Jr JH,2003;L.I.Wassenaar,2001)。

3.动物的营养级位置

营养级关系是群落内各生物成员之间最重要的联系,是群落赖以生存的基础,也是了解生态系统能量流动的核心。食物则是研究营养结构中一个重要的不可回避的问题,所以在研究群落时,首先把注意力集中在食物的生产和消耗上。群落的营养级关系就是指生物有机体以什么作为食物,以什么方式获取营养来维持自己的生长和繁衍。用通俗的话讲,就是生物有机体取食什么,又被什么有机体所捕食。正是这种营养级关系以及由此得出的能量流动途径,形成了生物系统的营养级结构。群落中各种生物有机体在食物链或食物网中所处的位置,亦即储存于有机体内的物质和能量作为其他有机体的营养和能量,而沿食物链移动的过程中暂时停留的位置,叫做营养位置或营养水平(trophic position或trophic leve1)。它实际上是把食物网错综复杂的取食关系简化为物质和能量移动的级别关系,营养位置的分类是机能的分类,而不是简单的物种分类(易现峰,2005)。

近年来,碳、氮同位素技术被应用于分析生态系统中的营养级关系,是较为实用、准确和简单的一种方法。稳定性同位素技术是基于生物体内天然存在的同位素比值与它们食物密切相关这一原理建立起来的(易现峰,2005)。动物体内同位素组成的变化通过代谢过程完成,消费者最初获得的营养来自于植物,因而植物的同位素分布模式必将影响到动物的组成。生物的新陈代谢会引起同位素的分馏,使15N、13C同位素在生物体内进一步富集,这样逐级富集重同位素从而实现了不同营养级间同位素的富集作用。一般而言,动物的δ13C值较它们的食物约富1~2左右。陆地和水生生态学的研究表明,δ13C有随营养级的升高而增加的趋势,从而为食性研究提供了理论基础和前提条件。

δ13C和δ15N在营养级间的富集通常分别为1‰~2‰和3‰~4‰(K.A.Hobson,1992;G.V.Hilderbrand,1996),因此顶级捕食物种(top predator)组织内13C和15N的浓度是最高的。测定消费者组织中的同位素,就可以推断它们的食物信息以及在生态系统中的营养级位置。

在动物营养级关系研究中,因为δ15N的富集更为明显(通常为3‰~4‰),所以δ15N更多地用于评价消费者在食物网中的营养级位置,其次是13C,也有一小部分应用D。很多研究表明,在一定环境条件下,动物组织δ15N值在相邻营养级间差异(Δ15N)明显,且比较恒定,Δ15N大约为3.0‰~5.0‰。这样,测得已知相邻营养级间动物组织δ15N值,就可以划分动物的营养级位置,公式如下:

同位素地球化学

式中:δ15Nbase是食物链底层生物N同位素组成(即初级生产者);Δ15N是相邻营养级同位素分馏值,即Δ15N=δ15Nconsumer-δ15Ndiet;当λ=1时,是初级生产者,λ=2时,是严格意义上的草食动物。

值得注意的是,δ15Nbase和Δ15N值随环境条件不同(不同地理位置)、生态系统的不同(陆地或海洋生态系统)而有所不同。Δ15N值应从实际捕食关系中(观察到的)或是统计学角度(与主要食物间的差值)确定。而且当λ>2时,营养级通常不是整数,也就是说消费者消费的不单是同一营养级食物(王建柱,2004)。

当消费者利用两种δ15N不同的食物来源时(例如杂食性鱼类同时利用敞水区和沿岸带食物),应用其中一种食物的δ15N作为评价消费者营养级的基值显然是不妥的。因此,为了同时考虑δ15Nbase的空间异质性,消费者的营养级位置的计算公式为

同位素地球化学

式中:α为两种食物来源中一种对消费者氮的贡献比例;δ15Nbase1是食物链底层第一种生物的N同位素组成;δ15Nbase2是食物链底层第二种生物的N同位素组成。

生物中δ15N值受食物源和生物的新陈代谢两方面因素的影响。生物的新陈代谢会引起同位素分馏,使15N同位素在生物体内进一步富集,这样逐级富集重同位素从而实现了不同营养级间同位素的富集作用。

一些研究表明,动物组织δ13C值随营养级位置增加而增大(McCutchan Jr JH,2003),可以与Δ15N一起作为动物营养级位置指标(P.J.W.Olive,2003)。但有些研究认为相邻营养级间δ13C值的差值(Δ13C)较小,约为0.4‰~1.0‰,使δ13C值在动物营养级研究方面的应用受到限制(B.J.Peterson,1987)。

与传统方法相比,稳定同位素技术在研究动物群落结构方面有如下优点:①稳定同位素技术可以连续地测出食物网中动物的营养级位置,从而克服了传统方法营养级只有整数的缺点,比较真实地反映了动物在食物网及群落中的位置及作用;②用稳定性同位素技术所得到的营养级关系,反映了动物间捕食与被捕食相互作用的长期结果,而不是某一偶然的捕食关系;③稳定同位素方法在研究小体型(昆虫和土壤动物)及复杂动物群落结构(水生动物)时更显其优越性,使我们可以真正地弄清这些动物在生态系统能量流动过程中的作用。

Cabana和Rasmussen(1994)对高营养层次鱼类———湖鳟营养级的研究是一个相当典型的例子。他们在24个加拿大地盾湖泊(Shield lakes)中测得成年湖鳟的δ15N值范围非常宽(7.5‰~17.5‰),对一个生物种属来说这样的氮同位素组成范围太宽,按照每一营养级氮同位素的富集度+3.5‰来计算,它几乎横跨了3个营养级,如何来认识这一现象呢?进一步的研究证明在这些不同的地盾湖泊中有不同的食物网结构,有的食物链短,有的食物链长。在短食物链湖泊中没有糠虾和饵料鱼,所以,湖鳟只能主要直接摄食浮游植物和底栖生物;而在另一些有糠虾和饵料鱼的食物链中,湖鳟就主要摄食糠虾或饵料鱼。因此,在食物链的两个中间营养层次有或没有的不同情况下,湖鳟可以处于不同的营养层次上,所以会显示出宽的δ15N值范围。这实际上证明杂食性是食物网的一种重要特性。

赵亮(2004)根据稳定性同位素技术原理建立了高寒草甸生态系统中动物的营养级模型,根据模型计算得出7种动物在高寒草甸生态系统中的营养级如表18-1所示。

表18-1 高寒草甸生态系统7种动物的营养级

(引自赵亮,2004)

值得考虑的是,在研究动物营养级位置时,虽然稳定同位素在划分一些复杂食物网和群落结构(如蚁类和鸟类群落)时具有很大优势,但应该注意到,在研究不同生态系统动物群落时一定要选择一个适当的同位素基线(isotopic baseline)。因为不同环境中,动物赖以生存的C源(δ13Cbase)和N源(δ15Nbase)的同位素组成差异很大,没有一个适当的同位素基线,单从动物组织同位素组成是无法估计动物所处的营养级位置的(D.M.Post,2002)。

‘柒’ 动物有哪六种营养物质

就是我们经常说的两大无机物,四大有机物,两大无机物就有水和无机盐,四大有机物就是蛋白质、脂肪(高中就又升了一个概念叫脂质)、维生素、糖类。能直接吸收的是水、无机盐和糖类,但糖类得单糖才能直接吸收,要是是多糖的话,还要分解成单糖才能吸收。而无机盐的吸收是少量的,虽说是少量的,但也是人体上不可缺失的,逆浓度梯度吸收的(简称:主动运输)。
接下来的蛋白质和脂肪就是当人体内,营养不足的话,便消化的物质,先是消耗脂肪,其次就是蛋白质,蛋白质消化完了,人也就完了,它们都需要经过分解后才能吸收的。
最后的维生素,他虽然看起来没什么用,但是它是身体上必不可少的物质,就比如初中学的缺少维生素C会坏血病。
所以以上就是六种营养物质,在人体内必不可少的物质。

‘捌’ 对动物体、人体来说营养物质是指什么,如何界定

基本营养物质是指糖类、脂质、蛋白质。它们是人体必需六大营养物质的其中一份,其余的则为为:无机盐、水、维生素。基本营养物是维持人体生理需求的基本物质。
三大营养物质代谢的相同点
(1)来源相同 三大营养物质的来源都有三条途径:食物中消化吸收、其他物质转化、自身物质的分解。 (2)都可以作为能源物质 三大营养物质在体内都可以进行氧化分解,作为能源物质使用。但它们供能有着先后顺序,它们按照糖类、脂质、蛋白质的顺序供能。 (3)在动物体内可以转化 糖类可以直接转化成蛋白质和脂肪,蛋白质也可以直接转化成糖类和脂肪,但脂肪不能直接转化成蛋白质。 (4)代谢终产物 二氧化碳和水是三大营养物质相同的代谢终产物。
三大营养物质代谢的不同点
(1)能否在体内储存 糖类和脂肪都可以在体内储存,但蛋白质不能在体内储存。 (2)代谢终产物不完全相同 糖类和脂肪的代谢终产物都是二氧化碳和水,但是蛋白质的代谢终产物除了它们外还有尿素。 (3)在体内的主要用途不同 糖类主要是氧化分解提供生命活动所需的能量,脂肪主要是在体内再次合成为脂肪储存起来,蛋白质被消化分解成氨基酸之后,主要用来合成生物体内各种组织蛋白以及酶和某些激素等。

‘玖’ 动物体和植物体营养物质组成的区别,比较详细的

(一)动物体的化学成分特点
(1)水分:动物体内水分含量随年龄的增加而大幅率降低。 (2)有机物质:脂肪和蛋白质是动物体内两种重要的有机物质。动物体内碳水化合物含量极少。蛋白质是构成动物体各组织器重要的组成成分。动物体内各种酶、抗体、内外分泌物、色素以及对动物有机体起消化、代谢、保护作用的一些特殊物质多为蛋白质。动物体内的蛋白质是由各种氨基酸按一定排列顺序构成的真蛋白质。 (3)灰分(矿物质) 钙、磷占:65%-75%。90%以上的钙、约80%的磷和70%的镁,分布在动物骨骼和牙齿中,其余钙、磷、镁则分布于软组织和体液中。 (4)动物活体成分的估计 动物活体成分构成规律: 动物总体重=水分重+脂肪重+脱脂干物质重。 水分与脂肪含量呈显着负相关。
(二)植物体的化学成分特点 植物体水分及其水分含量随植物从幼龄至老熟逐渐减少,碳水化合物是植物的主要组成成分。碳水化合物分为粗纤维和无氮浸出物。粗纤维是植物细胞壁的构成物质,在植物茎秆中含量较高。动物体内蛋白质含量较高,植物体内碳水化合物含量较高。
(三)动植物体组成成分的比较 (1)碳水化合物:碳水化合物是植物体的结构物质和贮备物质。动物体内的碳水化合物含量却少于1%,主要为糖原和葡萄糖。结构性多糖主要分布于根茎叶和种皮中,主要包括纤维素、半纤维素、木质素和果胶等,是植物细胞壁的主要组成物质。 动物体主要是葡萄糖、乳糖等单、双糖,植物体主要是蔗糖、淀粉、纤维素等双、多糖。 (2)蛋白质:蛋白质是动物体的结构物质。构成动植物体蛋白质的氨基酸种类相同。 (3)脂类:脂类是动物体的贮备物质。动物体内的脂类主要是结构性的复合脂类,如磷脂、糖脂、鞘脂、脂蛋白质和贮存的简单脂类等。动物体主要是饱和脂肪酸,植物体是不饱和脂肪酸。 (4)水分含量植物体大于动物体(5)矿物质。

‘拾’ 如何判断野生鹿类动物的营养状况

野生鹿大多数不存在营养过剩的问题。如果毛蓬乱无光就是有寄生虫,是营养不良的表现。

阅读全文

与如何判断动物的营养相关的资料

热点内容
微信改变我们哪些生活 浏览:1242
创造与魔法沙漠的动物在哪里 浏览:1243
篮球鞋网面为什么会破 浏览:1089
怎么拼升降板篮球 浏览:568
小型宠物猪多少钱 浏览:851
音乐文化课哪个好 浏览:675
到日本旅游如何报团 浏览:994
不在篮球场运球该在哪里练 浏览:1105
台湾哪里能买到宠物 浏览:1049
小动物怎么画才最好看 浏览:916
中西文化和西方网名有什么区别 浏览:1209
养宠物狗一般养多少年 浏览:894
广州黄埔哪里有卖宠物兔的 浏览:781
小米10怎么敲击背部打开相机 浏览:698
渔家文化目的有哪些内容 浏览:1073
海洋中发光的动物都有哪些 浏览:1150
如何消除美颜相机的标志 浏览:1058
篮球罚球为什么不往上抛 浏览:739
天香公园宠物医院洗澡在哪里 浏览:1132
怎么提高中国文化自信 浏览:267