㈠ 数学是一种别具匠心的艺术是谁说的
哈尔莫斯说:数学是一种别具匠心的艺术。
波莱尔·A:“数学是一门艺术,因为它主要是思维的创造,靠才智取得进展,很多进展出自人类脑海深处,只有美学标准才是最后的鉴定者。”
我们很多学校在高中进行文理分科,数学是理科的典型代表,艺术当然是文科的典型代表。有国外的研究机构研究数年得出结论说,理解数学和语言的脑细胞集中在左半脑;发挥情感、欣赏艺术的脑细胞集中在右半脑,这样好像把理性和感性给分别开来。
这也许有一定道理,但也不能局限在这种理论里面,那就变为一种成见。其实这两者并没有什么冲突,数学好的人,艺术不一定差,艺术好的人,数学也不一定不好。事实上,有很多数学家是造诣很深的艺术家。同时也有这样一些艺术家,他们利用数学原理创作出使人意想不到的优秀作品。
将数学和艺术完全沟通起来了。古希腊的毕达哥拉斯既是数学家也是艺术家。还有笛卡尔、达.芬奇、埃舍尔等他们既是数学家也是艺术家。数学对艺术的影响由来已久,在文艺复兴时期艺术家利用透视原理创作出不朽的名作,在20世纪荷兰艺术家埃舍尔对无限拼图的探索给人以启迪。
萨尔瓦多·达利利用四维立方体的展开图画出了使人震撼的作品。艺术家们从斐波那契数列,最小曲面、麦比乌斯带中得到启发。数学家们利用雕塑来宣扬数学的成就。
费尔兹数学奖获得者丘成桐教授认为数学是一门非常漂亮的艺术,正因为如此,他才能在数学领域取得如此大的成就。数学包含的和谐性、简洁性、对称性本身就具有美感,这种美就是数学美。很多人觉得数学是冷冰冰的,枯燥的,看着就让人头大,想说爱数学并不是件很容易的事。
那是没有真正了解数学,真正了解了数学,就会发现数学真的很有趣,这种数学美可以震撼人的灵魂,能愉悦人的身心,陶冶人的情趣。数字看上去很乏味,但是我们的电话号码、车牌号、身份证等等都要用到,什么奇数偶数、平方数、素数等等,有一种简单美,规则美。
当我们画出一个美的几何图形,构造出一个美的方程或矩阵,制作出一个美的几何体时,甚至通过分形理论画出的精美图形,难道数学不是一门艺术吗?
㈡ 数学应用于艺术创作的例子,能具体谈谈吗
生活在不同时代背景下的人们对艺术的定义和标准完全不同。自二战以来,人们普遍接受的艺术早已发生了根本性变化。
美国艺术评论家苏珊·桑塔格(Susan Sontag)在其着作《反对阐释》中写道:“去阐释,就是去使世界贫瘠,使世界枯竭——为的是另建一个‘意义’的影子世界。阐释是把世界转换成这个世界(‘这个世界’!倒好像还有另一个世界)。”
维内对此抱有同样观点。他认为纯粹个人化的表达只能通向艺术家个体的心理情感。最终,艺术只能吸引表达者自己或是与其有共同幻想和经验的人。数学的运用亦代表了作品意义的单一性。它们只能在数学维度中得以解读,而在其他任何语境下,无论是哲学、宗教还是社会学都无法产生意义。
贝纳·维内《上方带有数字23的金色饱和圆》(Round Saturation(Gold)with 23 on Top),布面丙烯(抛光),直径214.5cm,2011年。
“不断颠覆自己就意味着从根本上挑战过去的标准。”纵观艺术史,艺术大师们总将自己处于“矛盾”中,且始终对周遭一切保持质疑的态度和批判性思维。
但如今,又有多少人愿意接受“质疑”并为此寻找前行的方向?时尚芭莎艺术(Harper’s BAZAAR ART)专访贝纳·维内,与其就艺术创作的形式和意义展开对话。
㈢ 历史上数学与艺术之间的关系及教育思考
抽象的逻辑演绎、简练的形式表达、对称的结构分布以及永恒的生命力,使得数学对人类文化艺术生活的影响遍及绘画、雕塑、建筑、音乐和文学等诸多方面。与此同时,在对艺术创作的启迪思想和构造方法进行研究的过程中,也催1对于数学概念形象生动的艺术表达方式,如解析几何学。纵览数学和艺术之间的历史关系,恰如19世纪法国文学家福楼拜说的那样,“两者在山麓分手,有朝一日,将在山顶重逢”.
一、历史上数学和艺术之间的关系
1.古希腊时期的数学和艺术---相伴相生
西方文明发源于爱琴海西侧的古希腊。古希腊文明的开山鼻祖,数学家、科学家、哲学家、思想家毕达哥拉斯提出了“美在和谐”的观点,他认为只要恰到好处地调整数量比例关系,绘画、雕塑、建筑、音乐、舞蹈等就能产生最美妙的艺术效果。古希腊的艺术发展由此带有深刻的数学烙印,无论是雕塑还是绘画都表现出一种形态匀称、和谐安详的特点。特别值得一提的是,古希腊艺术家在设计作品时特别钟情于遵循“黄金分割”来划分整个画面和安排视觉中心点。1820年在爱琴海的米洛斯岛上出土了着名的古希腊大理石雕像“断臂的维纳斯”,这位爱神的身体各个部分都符合“黄金分割”这一特定的审美标准,成为女性人体艺术的巅峰之作。
在400多年的古希腊文明时期,数学与艺术基本上处于浑然一体的状态。人们甚至没有严格区分科学与艺术的概念,认为两者理所当然地是自然哲学的两个组成部分。这个时期的一些杰出人物,从早期的苏格拉底、柏拉图、亚里士多德,到后期的欧几里德,都是精通科学与艺术的跨界大师。古希腊文明的最后一位大师,数学家、物理学家、天文学家和哲学家阿基米德在《论球和圆柱》等经典着作中,把欧几里德严格的数学推理与柏拉图丰富的艺术想象和谐地融合在一起,用“穷竭法”导出了许多平面图形的面积和立体图形的体积,成为1800年后“微积分学”的思想源头。
2.文艺复兴时期的数学与艺术---合作巅峰
经过了漫长的中世纪,欧洲于13世纪末进入了文艺复兴时期,艺术在人文主义和科学思想的双重影响下蓬勃发展。为达到真实反映现实的目的,画家们面临着一个急待解决的数学问题---如何把三维的现实世界描绘在二维画布上?1435年,意大利画家、建筑学家、数学家、文学家阿尔伯蒂出版了《绘画论》一书,对基于透视几何学的焦点透视画法进行了科学的系统化。他认为大自然是艺术创作的源泉,数学是认识自然的钥匙,艺术的美就是和自然相符合。意大利画家、科学家达·芬奇用艺术家的眼光去观察自然,用科学家的精神去探索自然,深邃的哲理和严密的逻辑使他在艺术和科学上都达到了顶峰。达·芬奇在线透视与色透视的基础上,创立了透视学的第三个分支---空气透视;同时他还创作了许多精美绝伦的透视学作品,其中最优秀的当属《最后的晚餐》。
透视几何学的诞生和应用,使得数学和艺术的融合达到了一个里程碑式的高度。
波兰数学家、天文学家、法学家、医生、牧师哥白尼经过长年的观察和计算,在1543年发表的《天体运行论》中提出了“日心说”,沉重打击了教会的宇宙观。近100年后意大利物理学家、天文学家伽利略以《星际使者》《关于太阳黑子的书信》等着作有力地支持了哥白尼的“日心说”,奠定了近代实验科学的基础。哥白尼和伽利略两人的研究成果逐渐瓦解了传统上神学、科学、哲学之间的统一关系,为近代自然科学的发展铺平了道路。
3.近代思想启蒙运动中的数学和艺术---渐行渐远
发端于17世纪中叶的思想启蒙运动揭开了欧洲近代史的序幕,启蒙思想家们力求探索推动人类社会不断前进的永恒法则。1665年,英国数学家、物理学家、天文学家、哲学家牛顿,德国数学家、历史学家、法学家、哲学家莱布尼兹各自独立地创立了具有划时代意义的“微积分学”,彻底改变了数学概念绝大多数来源于直观的经验模型的面貌,开始更多地依赖于思维的构造。微积分学随即成为现代物理学、化学、天文学、生物学和地理学等众多自然科学和工程技术的基础理论方法,而且还广泛应用于经济、管理、语言、政治、艺术设计等人文社会科学领域。在微积分的基础上建立起来的点集拓扑学与泛函分析等各个现代数学分支日趋逻辑化和抽象化,也远远走在了所有现代数学应用领域的前列。
1750年德国美学家、哲学家鲍姆嘉通出版了一本学术专着《美学》,宣告了美学已确立为一门独立学科。他将美学定义为“感性认识的科学”,认为“科学研究的初衷是追求真,而艺术研究的目的是创造美”.与之同时代的德国哲学家、思想家黑格尔在其1817年出版的《哲学全书》中宣称,“艺术的内容就是人们内心的理念,艺术的形式就是诉诸感官的形象”.至此,人们对于数学和艺术更多的是强调它们之间的差异:数学作为自然科学的基础,主要遵循逻辑思维的原则,达到了理性认识的巅峰;而艺术作为人文精神的代表,主要运用形象思维的方式,达到了感性体验的极致。在鲍姆嘉通和黑格尔的指引下,艺术与现代数学都孤单地迈上了相对独立的发展道路4.近现代社会中数学与艺术的重新融合之路==进入20世纪,人类历史翻开了崭新的一页,人们的生活状态和思维方式也发生了深刻的变革。1945年美籍奥地利人、生物学家贝塔朗菲发表了《关于一般系统论》的论文,从此人们开始以整体性的观点来分析系统、要素和环境三者之间的互动联系和变化规律,科学与艺术的基本原理、工作对象、研究方法等各个方面都重新开始互相渗透和融合。就像英国学者马丁·约翰逊在《艺术与科学思维》一书中所指出的那样,“科学家与艺术家,他们虽然岗位不同,但在各自工作中所追求的目标是相通的,他们实际所采用的工作方法比他们实际所承认的有着更多的相同之处”.
根据思想倾向和艺术风格的不同,20世纪以来西方现代艺术史上形成了各种各样的艺术流派。西班牙画家、雕塑家、剧作家、诗人毕加索的名作《亚威农少女》,引发了立体主义运动的兴起。立体派比较关注如何运用几何原理和数学概念来革新传统的艺术形式,表现生活在迅猛变化的工业社会里的人们内心的期待、躁动、彷徨与失落。而抽象派则尝试打破绘画必须模仿自然的艺术观念,主张以抽象的几何图形为绘画的基本元素,来构造普遍的现象秩序与均衡美感。抽象派的先驱、荷兰画家蒙德里安的代表作品《灰色的树》,通过直线与直角的“纯粹造型”达到了人神统一的“绝对境界”.说到20世纪的艺术界,必须提及荷兰的埃舍尔,他是如此的特立独行,甚至至今都无法将他归属任何一个流派。埃舍尔一生钟情于镶嵌艺术的研究与创作,他从圆、正三角形、正方形、正六边形等基本几何图形出发,连续多次地利用欧氏几何里的反射、平移、伸缩、旋转这四种基本变换,使得基本几何图形扭曲变形为虫、鱼、鸟、兽、人物、花朵、魔鬼与天使等镶嵌图案。
后来,埃舍尔从读到的非欧几何、拓扑、分形几何等数学思想中再次获得了巨大灵感,使镶嵌艺术达到了鼎盛状态。在埃舍尔创作的那些充满现代数学气息的镶嵌艺术作品中,例如《红蚁》《瀑布》《鱼和鳞》《观景楼》,我们看到了一个个神秘莫测的神话世界。
如果说,非欧几何直接造就了埃舍尔辉煌的镶嵌艺术,那么分形艺术则充分展示了后现代主义的艺术风格。为了表现变幻的云朵、蜿蜒的河流、神秘的星系和粗糙的断面等自然形态,1975年数学家、计算机专家芒德勃罗出版的《分形:形状、机遇和维数》一书,宣告了分形几何的诞生。在审美情趣与科学内涵完美融合的分形图形中,厚重的思想随着时间消逝,流动的秩序在平面上涌动,主体裂成碎片丧失了中心地位,艺术通过计算机复制走向大众化。虽然分形图形具有复杂的结构,但总是可以利用简单函数无限迭代而成。这个特征使得分形广泛应用于各个艺术领域,尤其是装饰设计方面,如早期的贺卡、壁画、明信片、书籍封面,以及现在的电信卡、购物卡、文化衫、广告画面等。北京服装学院高绪珊教授率领的团队将分形理论应用于纤维制造流程,创造了多维高仿真长丝SFY,使人造纤维呈现出“龙缠柱”般的天然纤维风格。
㈣ 关于数学的的名人名言
关于数学的名人名言
1、纯数学是魔术家真正的魔杖。——诺瓦列斯
2、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。——高斯
3、数学支配着宇宙。——毕达哥拉斯
4、数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。——笛卡儿
5、数学是一种理性的精神,使人类的思维得以运用到最完善的程度。——克莱因
6、数学是一种会不断进化的文化。——魏尔德
7、数学是一种别具匠心的艺术。——哈尔莫斯
8、数学是一切知识中的最高形式。——柏拉图
9、数学是研究现实生活中数量关系和空间形式的数学。——恩格斯
10、数学是研究抽象结构的理论。——布尔巴基学派
㈤ 数学在艺术上的魅力
数学与艺术之间是紧密相连的,我刚开始接触数学这门学科的时候,并没有发现他的魅力所在,仅仅从定义出发,数学是研究数量、结构、变化、空间以及信息等概念的一门学科。然而在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学必不可少的基本工具。
很多凄美的爱情故事都是情感艺术上的一次完美的升华,笛卡尔的心形线是我听过的最感动的爱情故事。 在斯特哥尔摩的街头,五十二岁的笛卡尔邂逅了十八岁的瑞典公主克里斯汀。那时候生活落魄的笛卡尔没有什么财产,过着乞讨般的生活,所有的家当只有身上穿着的破破烂烂的衣服和随身所带的几本数学书籍。天性清高的数学家从不为了五斗米折腰,专心致志的沉浸在自己的数学世界里,身边过往的人群,喧嚣的车马队伍都无法对他造成干扰。突然有一天,一张年轻秀丽的脸庞,楚楚动人的灵动的双眼出现在他的面前问道:“你在干什么呢?”美丽的公主蹲下身子拿起地上笛卡尔的数学书和草稿纸,和他交谈起来,他们相谈甚欢,像是多年未见的好友一般,言谈中,笛卡尔发现公主的思维敏捷,对数学也有着浓厚的兴趣,这对笛卡尔来说,像是冬天里的阳光暖暖的洒进了冰封已久的心里。几天后,笛卡尔被意外的聘请成为小公主的数学老师,笛卡尔欣然往之。在笛卡尔的悉心教导下,小公主的数学突飞猛进,他们之间也渐渐变得亲秘起来。他们每天形影不离的,在瑞典这个浪漫的国度里面,一段纯粹、美好的爱情悄然发芽。
然而好景不长,他们之间的事情传到了国王的耳朵里,国王决定将笛卡尔处死,在狱中,笛卡尔每天都给公主写信,他的最后一份信没有写一句话,只有一个方程:r=a(1-sinθ)。后来这封信传到了公主的手里,她欣喜若狂,立刻就明白了恋人的意图,找来纸和笔,着手把图形画了出来,一颗心形图案出现在眼前,公主不禁留下了感动的泪水,每次看到这个着名的“心形线”,我脑海中就回想着这个凄美的爱情故事,其实 数学并不是枯燥而无味的,你用心去感受其中的奥妙,你一定能乐在其中。
数学的呈现形式有很多种,除了用图像表示函数以外,我们还可以对数字进行排列组合,在数学中呈现的形式就是一个个不同的数列,然而在文学艺术上可能就是一首首脍炙人口的经典诗歌。数学入诗,使人情趣盎然。如宋人邵康所写的:“一去二三里,烟村四五家,楼台六七座,八九十之花。”生动的描写了一幅自然朴实的乡村景象,宛如一幅淡雅的山水画,尽管它有一半是用数字描绘的,诗的美却隐含在数的和谐之中。诸如此类的诗歌有很多很多,譬如“不知细叶谁裁出,二月春风似剪刀。”“两个黄鹂鸣翠柳,一行白鹭上青天。”“毕竟西湖六月中,风光不与四时同。”“三更灯火五更鸡,正是男儿读书时。”“回眸一笑百媚生,六宫粉黛无颜色。”“七八个星天外,两三点雨山前。”“十年生死两茫茫,不思量,自难忘。”等等,这些数字与诗完美的契合在一起,更能让读者产生共鸣。
当数学与诗歌结合的同时,在爱情故事里有没有体现呢?在二十年来的浅薄的阅读中,我脑海里闪过了司马相如和卓文君。司马相如曾用一曲《凤求凰》赢得了美人的青睐,两人婚后不久,司马相如奔赴长安做了官,五年不归。文君十分想念,有一天,她突然收到了相公寄来的信,她欣喜若狂,不料拆开一看,只写道“一二三四五六七八九十百千万”十三个数字。聪明的卓文君立即明白了丈夫的意思:一行数字中唯独少了一个“亿”,岂不是表示夫君对自己“无意”的暗示?她心凉如水,怀着十分悲痛的心情,回了一封《怨郎诗》:一别之后,二地相悬。只道是三四月,又谁知五六年。七弦琴无心弹,八行书无可传,九连环从中折断,十里长亭望眼欲穿。百思想,千系念,万般无奈把郎怨。意思是:万语千言说不尽,百无聊赖十倚栏。重九登高看孤雁,八月仲秋月圆人不圆。七月半烧香秉烛问苍天,六月伏天人人摇扇我心寒。五月石榴红胜火偏遇阵阵冷雨浇花端。四月枇杷未黄我欲对镜心愈乱。急匆匆,三月桃花随水转,飘零零,二月风筝线儿断。噫,郎呀郎,巴不得,下一世,你为女来我做男。司马相如看完妻子的信,不禁惊叹妻子之才华横溢。遥想昔日夫妻恩爱之情,羞愧万分,从此不再提遗妻纳妾之事。这首诗也便成了卓文君一生的数字诗的代表作。司马相如和卓文君的爱情故事可以说是千古佳谈,他们之间这首经典的数字传情的诗也感动了无数的后人,私以为,这可以说是数字诗歌的爱情故事的典范了。古今中外还有很多的问题,是以诗歌的形式叙述的,是诗人和数学家的和谐统一,形成了诗歌海洋中别具风格的浪花,也是数学天空中耀眼的星光,把数字灵活的运用到文学中,又焕发出了新的生命,这也让我对数学产生了别样的情感。
如果说把数字进行排列组合是文学中的一种表达的方式,那么在日常生活中,几何学也同样有着广泛的应用。在艺术的创作过程中,无论创作者是有意识的还是无意识的,数学关系都是客观存在的。在中国的传统建筑中,空间几何被灵活的运用。传统的三合院、四合院,以及雕梁画栋,飞檐峭壁看起来总是那么和谐,那么舒服,符合了人性化的审美观,具有特别的亲和力。再诸如其他的陶瓷、青铜、园林以及服饰等等艺术,都能隐隐看见“数学关系”的印记。即使是我们出土的最早的那些没有纹理的瓶瓶罐罐,也绝对是一种美感、质朴的表达。艺术的可贵之处,在于被人巧妙地运用中,使得这种和谐的关系恰到的好。
我们曾经在解析几何中经常会运用到的整体法、隔离法等等,也能被运用到日常两个人之间的表达。前段时间我看到了杨绛先生给钱钟书写的一封信,信里只写了一个字“怂”,如果我们仅仅是从这个字的整体去看,其实也发现不了什么,那如果我们把这个整体拆开,就能明白杨绛先生是想问钱钟书“你的心上有几个人”,是不是就变得有趣了多了呢。钱钟书也只回了一个字“您”,意思是说“我的心上只有你一个”。小时候我会抱怨学那么多数学理论知识有什么用呢,我又不用函数去买菜,随着见识的渐渐增长,接触了不同的领域之后,才知道数学是一切知识的基础,有时候我们在思考一个事情,处理什么问题时,会不经意间使用一些以前学习到了数学思维,只是当时的我们并没有注意到罢了。三毛说过:“读书多了,容颜自然改变,许多时候,自己可能以为许多看过的书籍都成了过眼云烟,不复记忆,其实他们仍是潜在的。在气质里,在谈吐上,在胸襟的无涯,当然也可能显露在生活和文字里。”在这里,我也想说:“ 数学学久了,我们的思维方式自然会改变,我们的逻辑性也会增强,曾经我们以为已经忘掉的数学公式,其实他的一些推导方法已经融进了我们的血液里,偶尔会在我们生命的长河里激起一片浪花 。”
当然数学除了运用到诗歌、建筑、陶瓷等等,在绘画、音乐中也有很多体现,在这里我就不一一叙述了。
数学和艺术之间可以说是相辅相成的,数学有助于艺术的创造,也可以用来鉴别艺术作品,甚至可以作为一种桥梁,连接不同的艺术表达形式。反之,艺术可以给数学研究提供新的课题,拓展数学的领域,有助于数学的理解和传统,更重要的是可以改变我们的气质,陶冶情操。当把数学融进了艺术之中,再赋予我们的情感,无论这份情感是欢喜或悲怆,都会是一个值得流传的故事。现在我们常说的工匠精神,就是几十年如一日的坚持自己的初心,把自己的工作当成一种艺术虔诚的去对待,不知不觉中我们便会成为这个行业的引领者。把工作当成一门艺术,把艺术活成了生活,我们乐在其中,投入的是我们的真情实感,足以谱写成一首首动人的诗篇。每个人的生命都是有限的,然而艺术传承却是无限的,如果可以,我也想成为其中的一份子,在人类进化的过程中,留下自己生命独特的印记。 ——文/紫青 2021/1/9
写在后面的话:其中参考了很多的资料文献,就不一一列举了,说明性的文章不像小说般天马行空,一些必要的参考和引用还是不能少的。
㈥ 描写数学之美的诗句
1. 关于数学之美的诗句
关于数学之美的诗句 1.关于数学的诗句
原发布者:zhuzhu128
与数学有关的诗歌 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学能使人获得智慧,科技可以改善物质生活,但数学却能提供以上的一切。我们想变枯燥乏味的数学学习为欣赏美发现美的审美过程,完全可以渗透一些与数学有关的诗歌,甚或者引导学生去创作。我曾听过青岛二中老师的课和教研活动,他们的学生们在这方面所展现的能力和才情使我惊讶。可见要相信学生的创造力想象力远超过我们所能想象,我们所能做的应该做的,就是给他们一个启发,搭建一个平台。下面附上我所积累的一些与数学有关的诗歌。 一、与课本章节有关的诗歌第一章《集合、映射与函数》:日落月出花果香,物换星移看沧桑。因果变化多联系,安得良策破迷茫?集合奠基说严谨,映射函数叙苍黄。看图列表论升降,科海扬帆有锦囊。 第二章《指数函数、对数函数和幂函数》:晨雾茫茫碍交通,蘑菇核云蔽长空;化石岁月巧推算,文海索句快如风.指数对数相辉映,立方平方看对称;解释大千无限事,三族函数建奇功。 二、诗歌数学题朱世杰的《四元玉鉴》、《或问歌录》共有十二个数学问题,都采用诗歌形式提出。如第一题:"今有方池一所,每面丈四方停。葭生两岸长其形,出水三十寸整。东岸蒲生一种,水上一尺无零。葭蒲稍接水齐平,借问三般(水深、蒲长、葭长)怎定?"在元代有一部算经《详明算法》内有关于丈量田亩求法:"古者量田较润长,全凭绳尺以牵量。一形虽有一般法,惟有方田法易详。若见涡斜并凹曲,
2.关于数学的诗
关于数学的诗有:
一、《山村咏怀》
作者:邵雍(北宋)
一去二三里,烟村四五家。
亭台六七座,八九十枝花。
译文:
一眼看去有二三里远,薄雾笼罩着四五户人家。
村庄旁有六七座凉亭,还有许多鲜花正在绽放。
赏析:诗人用“小学数数”的方式将乡村美景一一道来,通俗易懂,仿若画面就在眼前一般。
二、《题秋江独钓图》
作者:王士祯(唐)
一蓑一笠一扁舟,一丈丝纶一寸钩。
一曲高歌一樽酒,一人独钓一江秋。
译文:
戴着一顶斗笠披着一件蓑衣坐在一只小船上,一丈长的渔线一寸长的鱼钩。
高声唱一首渔歌喝一樽酒,一个人在这秋天的江上独自垂钓。
三、《咏雪》
作者:郑板桥(清)
一片二片三四片,五片六片七八片。
千片万片无数片,飞入梅花总不见。
译文:
一片一片的雪花纷纷扬扬的从天而落,整个天地都白茫茫的一片。
飘落的雪花落入芦花丛里,和白色的芦花融为一体,叫人难以分辨。
赏析:人使用数字,主要是展现雪景的美妙以及美好,在人们眼前展现一幅大雪纷的景象,仿佛雪景就在读者的眼前,让人有身临其境之感。
四、《绝句》
作者:杜甫(唐》
两个黄鹂鸣翠柳,一行白鹭上青天。
窗含西岭千秋雪,门泊东吴万里船。
译文:
两只黄鹂在翠绿的柳枝间鸣叫,一行白鹭向湛蓝的高空里飞翔。
西岭雪山的景色仿佛嵌在窗里,往来东吴的航船就停泊在门旁。
五、《西江月·夜行黄沙道中》
作者:辛弃疾(宋)
明月别枝惊鹊,清风半夜鸣蝉。稻花香里说丰年,听取蛙声一片。
七八个星天外,两三点雨山前。旧时茅店社林边,路转溪桥忽见。
译文:
皎洁的月光从树枝间掠过,惊飞了枝头喜鹊,清凉的晚风吹来仿佛听见了远处的蝉叫声。在稻花的香气里,人们谈论着丰收的年景,耳边传来阵阵青蛙的叫声。
天空乌云密布,星星闪烁,忽明忽暗,山前下起了淅淅沥沥的小雨。往日的小茅草屋还在土地庙的树林旁,道路转过溪水的源头,它便忽然出现在眼前。
赏析:作者自己夜行黄沙道中的具体感受,描绘出农村夏夜的幽美景色,形象生动逼真,感受亲切细腻,笔触轻快活泼,使人有身历其境的真实感。
3.有关数学王国名言诗句
音乐与代数很类似.——哈登伯格
硬说数学科学无美可言的人是错误的.美的主要形式是秩序、匀称与明确.——亚里斯多德
感觉到数学的美,感觉到数与形的协调,感觉到几何的优雅,这是所有真正的数学家都清楚的真实的美的感觉.——庞加莱
数学之美是很自然明白地摆着的.——哈尔莫斯
我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的.
——冯.诺伊 曼
我的工作总是力图把真与美结合起来,但是,当我不得不选择其中的一种时,我通常选择美.——韦尔
在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多.——斯蒂恩
纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的.——哈尔莫斯
对早已正确认定的定理做进一步的研究,探索它的新证法,只不过是因为现有的证明欠缺美的魅力.——克莱因
数学家如画家或诗人一样,是款式的制造者。。数学家的款式,如同画家或诗人的款式,必须是美的……世上没有丑陋数学的永久立身之地.——哈代
一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的.——库默
难道不可以把音乐描绘成感觉的数学,而把数学描绘成理性的音乐吗?这样,音乐家感觉到数学,数学家想到音乐——音乐是梦想,数学是工作的一生——每一方都经由对方达到尽善尽美的境地,那时,人类的智慧达到完美的典型,将在某个未来的莫扎特——狄利克雷或贝多芬——高斯的歌颂下而光彩夺目.这种联合已经在一个赫姆霍尔兹的天才和工作中清楚地预示出来了.——西尔弗斯特
4.数学之美的表述
美是人类创造性实践活动的产物,是人类本质力量的感性显现。
通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。数学美是自然美的客观反映,是科学美的核心。
简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。历史上许多学者、数学家对数学美从不同的侧面作过生动的阐述。
普洛克拉斯早就断言:“哪里有数学,哪里就有美。”亚里士多德也曾讲过:“虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离。
因为美的主要形式家是“秩序、匀称和确定性”,这些正是数学研究的原则。”我国着名数学家华罗庚说过:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。”
数学家徐利治说:“作为科学语言的数学,具有一般语言文字与艺术所共有的美的特点,即数学在其内容结构上和方法上也都具有自身的某种美,既所谓数学美。数学美的含义是丰富的,如数学概念的简单性、统一性,结构关系的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等等都是数学美的具体内容。”
以上的论述可见,数学中充满着美的因素,数学美是数学科学的本质力量的感性和理性的呈现,它不是什么虚无飘渺、不可捉摸的东西,而是有其确定的客观内容。 数学美有别与其它的美,它没有鲜艳的色彩,没有美妙的声音,没有动感的画面,它却是一种独特的美。
德国数学家克莱因曾对数学美作过这样的描述:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。”数学美与其它美的区别还在于它是蕴涵在其中的美。
打个比方来说,大家一定都有这种感觉,绝大部分同学对音体美容易产生兴趣,而对数学感兴趣的不多。我认为,这主要有两个方面的原因:一是音体美中所表现出来的美是外显的,这种美同学们比较容易感受、认识和理解;而数学中的美虽然也有一些表现在数学对象的外表,如精美的图形、优美的公式、巧妙的解法等等,但总的来说数学中的美还是深深地蕴藏在它的基本结构之中,这种内在的理性美学生往往难以感受、认识和理解,这也是数学区别于其它学科的主要特征之一。
二是长期以来,我们的数学教材过分强调逻辑体系和逻辑推演,忽视数学美感、数学直觉的作用,长此以往,学生将数学与逻辑等同起来。一味注重数学的逻辑性而忽视了数学本身的美,学习的过程中就会感到枯燥无味缺乏兴趣。
大多数的数学家会由他们的工作及一般数学里得出美学的喜悦。他们形容数学是美丽的来表示这种喜悦。
有时,数学家会形容数学是一种艺术的形式,或至少是一个创造性的活动。通常拿来和音乐和诗歌相比较。
数学之美还在于其对生活的精确表述、对逻辑的完美演绎。可以说正是这种精确性才成就了现代社会的美好生活。
伯特兰·罗素以下列文字来形容他对数学之美的感觉:Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry. (The Study of Mathematics, in Mysticism and Logic, and Other Essays, ch. 4, London: Longmans, Green, 1918.)翻译:数学,如果正确地看它,则具有……至高无上的美——正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种真实的喜悦的精神,一种精神上的亢奋,一种觉得高于人的意识——这些是至善至美的标准,能够在诗里得到,也能够在数学里得到。
(研究数学,在神秘主义和逻辑,与其他论文,概括。4、伦敦:浪漫书屋,绿色,1918年。)
保罗·埃尔德什形容他对数学不可言说的观点,而说:“为何数字美丽呢?这就像是在问贝多芬第九号交响曲为什么会美丽一般。若你不知道为什么,其他人也没办法告诉你为什么。
我知道数字是美丽的。且若它们不是美丽的话,世上也没有事物会是美丽的了。”
它的最美之处莫过于在无形之中就让你思维变得敏捷.考虑事情时,不在那么偏激,那么单一.作为一个公民来说了不了解它是一个后话,至少应该不否定它.尤其是学生.让我们先来看看看下面的算式:1 x 8 + 1= 912 x 8 + 2= 98123 x 8 + 3= 9871234 x 8 + 4= 987612345 x 8 + 5= 98765123456 x 8 + 6= 9876541234567 x 8 + 7= 987654312345678 x 8 + 8= 98765432123456789 x 8 + 9= 9876543211 x 9 + 2= 1112 x 9 + 3= 111123 x 9 + 4= 11111234 x 9 + 5= 1111112345 x 9 + 6= 111111123456 x 9 + 7= 1。
5.求关于数学的诗~~急
利用诗歌表达数学思想、概念的诗歌比较多。
例如张景中院士主编的新课程高中数学教材中(该教材是湖南教育出版社新课程标准实验教材),在每一章都有一首诗歌。例如第一章《集合、映射与函数》时,说到: 日落月出花果香,物换星移看沧桑。
因果变化多联系,安得良策破迷茫? 集合奠基说严谨,映射函数叙苍黄。 看图列表论升降,科海扬帆有锦囊。
当到第二章《指数函数、对数函数和幂函数》时,说到: 晨雾茫茫碍交通,蘑菇核云蔽长空; 化石岁月巧推算,文海索句快如风. 指数对数相辉映,立方平方看对称; 解释大千无限事,三族函数建奇功。 在学习完这两章内容后再仔细研读,别有一番感受。
二、诗歌数学题 数学很抽象,又令人感到枯燥无味,怎样使数学易于理解,为人们所喜爱,在这方面,中国古代数学家做出许多尝试,歌谣和口诀就是其中一种,让人们在解答数学问题的同时,也感受到了诗歌的魅力。从南宋杨辉开始,元代的朱世杰、丁巨、贾亨、明代的刘仕隆、程大位等都采用歌诀形式提出各种算法或用诗歌形式提出各种数学问题。
朱世杰的《四元玉鉴》、《或问歌录》共有十二个数学问题,都采用诗歌形式提出。如第一题:"今有方池一所,每面丈四方停。
葭生两岸长其形,出水三十寸整。东岸蒲生一种,水上一尺无零。
葭蒲稍接水齐平,借问三般(水深、蒲长、葭长)怎定?"在元代有一部算经《详明算法》内有关于丈量田亩求法:"古者量田较润长,全凭绳尺以牵量。一形虽有一般法,惟有方田法易详。
若见涡斜并凹曲,直须裨补取为方。却将黍实为田积,二四除之亩法强。
" 明代程大位《算法统宗》是一本通俗实用的数学书,也是数字入诗代表作。《算法统宗》全书十七卷,广泛流传于明末清朝,对于民间数学知识的普及贡献卓着。
这本书由程大位花了近20年完成,他原本是一位商人,经商之便搜集各地算书和文字方面的书籍,编纂成一首首的歌谣口诀,将枯燥的数学问题化成美妙的诗歌,让人朗朗上口,加强了数学普及的亲合力。程大位还有一首类似的二元一次方程组的饮酒数学诗:"肆中饮客乱纷纷,薄酒名醨厚酒醇。
好酒一瓶醉三客,薄酒三瓶醉一人。共同饮了一十九,三十三客醉颜生。
试问高明能算士,几多醨酒几多醇?"这道诗题大意是说:好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒一位客人。如果33位客人醉倒了,他们总共饮下19瓶酒。
试问:其中好酒、薄酒分别是多少瓶? 着名《孙子算经》中有一道"物不知其数"问题。这个算题原文为:"今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰二十三。
"这个问题流传到后世,有过不少有趣的名称,如"鬼谷算"、"韩信点兵"等。程大位在《算法统宗》中用诗歌形式,写出了数学解法:"三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。
"这首诗包含着着名的"剩余定理"。也就说,拿3除的余数乘70,加上5除的余数乘21,再加上7除的余数乘15,结果如比105多,则减105的倍数。
上述问题的结果就是:(2*70)+(3*21)+(2*15)-(2*105)=23。 在印度学者婆什迦罗的着作中,也有这样一首数学诗:"素馨花开香扑鼻,诱得蜜蜂来采蜜。
熙熙攘攘不知数,一群飞入花丛里。试问此群数有几?且把条件来分析:全体之半平方根,另有两只在一起;总数的九分之几,徘徊在外做游戏。
"你如果列出无理方程运算后,则可得出此群蜜蜂为72只。另外有一首写荷花的数学诗,:"平平湖水清可鉴,石上半尺生红莲;出泥不染亭亭立,忽被吹到清水面。
渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?"这是一首多么富有诗情画意的代数题!你看,长在湖里的红莲,露出湖面的长度是半尺,它被风吹向一边,红莲顶上的花离原水面的距离为2尺,问湖水有多深?根据勾股定理列式算得,湖深为3.75尺。 三、数字入诗: 最常见的入诗的数字是一。
"一"虽说是个数字概念,其实,把"一"字恰当地运用到诗文中,会产生美的艺术效果。 例如清代诗人陈秋舫写过一首以《题秋江独钓图》为题的"一"字诗:"一帆一桨一扁舟,一个渔翁一钓钩,一俯一仰一场笑,一江明月一江秋。
"五代时南唐后主李煜在位时,曾为宫廷画家卫贤所作《春江钓叟图》题词二首:"浪花有意千重雪,桃李无言一队春;一壶酒,一竿身,世上如侬有几人。""一棹春风一叶舟,一纶茧缕一轻钩;花满渚,酒满瓯,万顷波中得自由。
"把一个个洒脱的渔翁形象刻画得栩栩如生。 又如元曲一首小令《雁儿落带过得胜令》:"一年老一年,一日没一日,一秋又一秋,一辈催一辈,一聚一离别,一苦一伤悲。
一榻一身卧,一生一梦里,寻一个相识,他一会,咱一地,都一般相知,吹一回,唱一回。"诗中22个"一"字不断重复,反映了人生虚幻的凄苦。
其写法奇特,而以俚语取胜。 有些诗歌会把一到十十个数字镶嵌到诗中。
宋代理学家《邵康》云:"一去二三里,烟村四五家,亭台六七座,八九十枝花。"此诗妙在顺序嵌进十个基数,寥寥数语,描绘出一幅恬静淡雅的田园景色,勾起人们不尽的情思和神往。
6.求一篇关于数学之美的作文1000字
数学作为所有科学的基础,其作用众所周知。
进入现代文明的我们早就习惯于生活在数字的海洋中,用 1、2、3、4进行着基本的沟通交流。但与其巨大社会作用相反的是很少有人真正地喜爱数学,真正地醉心于数学研究,挖掘深藏的数学之美。
人们常说“不要以貌取人”。作为一门用数字和图形说话的学科,数学就像是科学童话里的灰姑娘,其枯燥、乏味的表象下面,隐藏着最动人、美丽之处。
首先我认为数学之美,美在神秘。简简单单一个符号就可以勾勒出无穷无尽的自然真理。
牛顿运动三大定律,只用几个简单的数学公式,就能够囊括浩瀚宇宙的运动规律。对于每一个乐于探求真相的人来说,数学可以说是他们最好的旅游胜地。
一群群数字、一个个图形在这里交织出了一幅幅最动人的风景。这片风景连绵不断却又迥然不同,当你徜徉在数学的海洋中,你绝不会有“高处不胜寒”的感慨,也不会有“一马平川任我行”的放纵,有的只是寻幽探胜的意趣和对自然真理的崇敬之情。
就连中国最着名的数学家陈景润在摘下数学王冠上的宝石后,依然要怀着朝圣的心情在数学研究的道路上谨慎前行。 其次,我认为数学之美,美在应用。
“金玉其外,败絮其中”常被我们用来贬斥那些虚有其表的人和事,可见我们评价美的标准,不光是因为其具备美好的内外部特征,更要注重其是否具有实用价值。“数学是众科学之母”一句话就说尽了数学在社会生活各领域的价值体现。
购物时用数学,电脑软件的开发、一座城市的交通路线设计、整个地球的网络建设,都离不开数学。甚至于艺术领域,也有数学的身影;数字按不同的音高排列,是悠扬的乐谱;雕塑和绘画中,哪一个少得了数学黄金分割的定律?故宫没有一根钉子的角楼,重檐斗拱的紫禁城,哪一个离得开严谨的数学知识?可以毫不夸张的说,正是数学用数字和图形搭建了人类社会不断前进的阶梯。
数学之美犹如优美和谐的乐曲,别具一格的绘画,雄伟壮美的建筑,同样会使数学学习者们激情荡漾。有着这样的奉献和功绩,我们能说数学不美吗? 最后我认为数学之美,美在于一次一次挑战后的成功。
而这种美感的获得,常常以长时间的苦苦思考及单调乏味的运算为代价,而且必须一次次地接受失败与错误, 必须接受枯燥学习所带来的孤独。屡战屡败,屡败屡战,最后你可能在冲凉时,或者刷牙时,突然间豁然开朗,仿佛音乐突然响起,问题好像一下子就解决了。
那时候的我,往往有一种人在高山飘飘然的感觉。这种美是无与伦比的。
这就是我眼中的数学质朴而充满魅力。作为科学界里一块奇异的宝石它必将在新时代里散发出灿烂的光芒,用它特有的美引导我们不断前行。
7.谁帮我写一首赞美数学的诗,越能掰越好
数学,心中的至爱
你从远古走来,
严谨的步履不着尘埃;
你的佩戴朴素而美丽,
闪耀着比珠宝还珍贵的智慧之光;
你用丝帘遮盖着那圣洁的容颖,
若隐若现,引来了多少杰出的男子来猎色,
你合着宇宙的音符翩翩起舞,
我们的心哪,跟你一起跳跃;
纯洁的语言是如此精确,
那颗真心致死不逾,
在漫长的岁月里,
虽风尘的洗礼,
美丽依然。
你的风姿惟有向智者展现,
那些愚夫也不可望也不及,
你是女神,
掌管着智慧宝箱的钥匙,
叫那些能见到你的人,和欣赏你的人
得到生命的力量,
对这你的美丽,
我只能用最美的诗来歌唱。
8.数学名言的数学美
数学确属美妙的杰作,宛如画家或诗人的创作一样——是思想的综合;如同颜色或词汇的综合一样,应当具有内在的和谐一致。
对于数学概念来说,美是她的第一个试金石;世界上不存在畸形丑陋的数学。——G.H.Hardy 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。
——F.Klein 哪里有数,哪里就有美。——Proclus 当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐。
——柯普宁(前苏联哲学家) 这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(-1827) 社会的进步就是人类对美的追求的结晶。
——马克思(K.Max) 数学,如果正确地看,不但拥有真理,而且也具有至高的美。 ——罗素(B.Russell) 数学能促进人们对美的特性——数值、比例、秩序等的认识。
——亚里士多德(Aristotle) 美包含在体积和秩序中。 ——黑格尔(G..W.F.Hegel) 一个没有几分诗人才能的数学家决不会成为一个完全的数学家。
——魏尔斯特拉斯(KarlWeierstrass1815-1897) 纯粹数学,就其本质而言,是逻辑思想的诗篇。 ——爱因斯坦 数学如同音乐或诗一样显然地确实具有美学价值。
——雅可比 数学是创造性的艺术,因为数学家创造了美好的新概念;数学是创造性的艺术,因为数学家的生活、言行如同艺术家一样;数学是创造性的艺术,因为数学家就是这样认为的。 ——哈尔莫斯 音乐与代数很类似。
——哈登伯格 硬说数学科学无美可言的人是错误的。美的主要形式是秩序、匀称与明确。
——亚里斯多德 数学之美是很自然明白地摆着的。 ——哈尔莫斯 我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的。
——冯.诺伊 曼 我的工作总是力图把真与美结合起来,但是,当我不得不选择其中的一种时,我通常选择美。 ——韦尔 在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多。
——斯蒂恩 纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。——哈尔莫斯 对早已正确认定的定理做进一步的研究,探索它的新证法,只不过是因为现有的证明欠缺美的魅力。
——克莱因 数学家如画家或诗人一样,是款式的制造者。
数学家的款式,如同画家或诗人的款式,必须是美的……世上没有丑陋数学的永久立身之地。——哈代 一种奇特的美统治着数学王国,这种美不像艺术之美与自然之美那么相类似,但她深深地感染着人们的心灵,激起人们对她的欣赏,与艺术之美是十分相象的。
——库默 难道不可以把音乐描绘成感觉的数学,而把数学描绘成理性的音乐吗?这样,音乐家感觉到数学,数学家想到音乐——音乐是梦想,数学是工作的一生——每一方都经由对方达到尽善尽美的境地,那时,人类的智慧达到完美的典型,将在某个未来的莫扎特——狄利克雷或贝多芬——高斯的歌颂下而光彩夺目。这种联合已经在一个赫姆霍尔兹的天才和工作中清楚地预示出来了。
——西尔弗斯特 一般地说,我更想把数学视为是艺术,而不是科学。因为我们可以说,数学家的活动,当他受外部的理性世界所引导,而不是被控制时,不断地进行创造性的活动,与一个艺术家、一个画家的活动相类似,有着实在的,不是虚幻的相似点。
数学家这一方面的严密演绎推理可以比喻为画家那一方面的绘画技巧。恰如没有一定技巧的人不能成为一位好画家一样,没有一定的精密推理能力的人不能成为一位好的数学家。
但是,这些尽管是他们的基本特质,还不足以使一个画家或数学家名副其实,画图技巧与推理能力,说实在的,终究不是最重要的因素。远为敏感的,为二者都是主要的一类特质是想象力,它才能造就一名杰出的艺术家或杰出的数学家。
——博歇 我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。
——贝尔斯 在现实中,不存在像数学那样有如此多的东西,持续了几千年依然是确实的如此美好。 ——苏利文。
㈦ 那些艺术里的数学之美
文/陈墨祎
01
我要是指着一幅画说美,很多人会点头,但我要是指着一堆数字方程说美,估计大部分人就得摇头了。
提起数学,我们很多人只会枯燥乏味或者复杂深奥。其实,数学里也有美学。
我国着名数学家华罗庚说过,“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。”
数学之美,蕴涵在生活的方方面面,尤其是在艺术当中。
02
有这么一位数学教授,把她发现艺术里的数学之美对我们娓娓道来。
梁进教授在她的这本《博物馆艺术拾珍:收敛篇》里,带我们走进世界四大着名博物馆,去领略绘画、雕塑里的数学之美。
其实,从这本书标题中的“收敛”二字,我们就可以窥得几分数学的影子。 收敛这个词来自于数学当中的微积分,大意是指会聚于一点,向某一值靠近。 与之对应的数学当中的另一个名词叫做“发散”。
《博物馆艺术拾珍:收敛篇》选择了世界四大综合博物馆以及一些历史特色明显的博物馆,包括但不限于着名的“卢浮宫博物馆”“大英博物馆”“埃及博物馆”“梵蒂冈博物馆”等,尤其是很具有历史和相关博物馆记忆的作品。
03
有的时候,我们觉得艺术美,恰恰是因为里面涵盖的数学元素。
大家耳熟能详,并且出现在很多人初中课本当中的一定有这条—— 美的起源:黄金分割比例。
黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值, 比值约为0.618, 这个比例被公认为是最能引起美感的比例。
在古希腊时期,有一天数学家毕达哥斯拉走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来。
后来,古希腊数学家欧多克索斯将这一比例进行系统研究,其研究结果被写进欧几里得的着作《几何原本》里,至今广为流传。
而画家们也发现,按0.618:1来设计的比例,画出的画最优美。因此,黄金分割的数学美学在很多着名的艺术品中被使用过。
在达芬奇的作品《维特鲁威人》、《蒙娜丽莎》、还有《最后的晚餐》中都运用了黄金分割。
古希腊的着名雕像断臂维纳斯和太阳神阿波罗都通过故意延长双腿,使之与身高的比值为0.618。
建筑师们也对数字0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院、埃菲尔铁塔,希腊雅典的巴特农神庙,都有黄金分割的足迹。
04
数学之美,也同样体现在几何图形当中。
毕达哥拉斯说:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。”因为这两种图形在任何方向上看都是对称的。
其实在我们身边随处可见根据对称设计的东西:小到一块橡皮、一只球拍,大到一架飞机、一座建筑。
着名的北京人民大会堂,高耸入云的上海东方电视塔,形象逼真的扇形,梅花瓣样的组合图形,铜钱式的圆中方,美丽的“雪花”图案,都显示出几何图形的对称美,和谐美。
梵高的《星空》,印象派的画风让这幅图显得绮丽迷幻,然而浪漫之下,安宁夜空仿佛剧烈流动的浓艳色彩,被人们渐渐证明,其抽象的“湍流”,非常符合着名的“柯尔莫哥洛夫微尺度”。
05
就连看起来无趣乏味的数学方程,也有其艺术之美。
比如, 心形线方程。
在威廉布莱克的画作《雅各布之梦》(也叫《雅各布天梯》)中也体现了数学模型之美。
这幅画讲的是布莱特的弟弟罗伯特死的时候,悲痛的布莱克看见他弟弟的灵魂穿过屋顶冉冉上升,“欢乐地拍着手”,他得到灵感将圣经旧约里雅各布做梦登天梯的故事画出来。
不同于其他许多天梯是直上直下的画, 布莱特的天梯是意味深长地螺旋上升的,形成一个三维圆锥螺旋线。 整个画面很数学。
06
数学,是研究数量、结构、变化、空间以及信息等概念的一门科学。
它的特点是精密性,广泛性,抽象性。
艺术中涵盖着数学,就像数学和艺术分别是两个集合,但两者并不是并集的关系,而是交集的关系。
“美术的结构是数学的,数学的表达是艺术的。”
当我们还在思考文理之间的界限时,先行者们恐怕很早就预料到,知识的相通才是使艺术得以长存的诀窍。
看完这本书,或许你可以试着用新眼光重新去审视那些艺术品:达芬奇《维特鲁威人》中暗含的黄金人体比例,伦勃朗笔下呈现自然界“正态分布”的群像,莫奈《睡莲》中体现出来自然界的函数映射......
就像梁进教授所说的:“我从数学角度分享一些对博物馆珍品的感想,怕数学的读者也不用怕,我不会用数学公式轰炸读者,只是用数学思想和观点从另一个角度去欣赏艺术,畅游博物馆,或许会产生不一样的效果。”
㈧ 数学教师课堂艺术有哪些
教学过程不是简单的知识传输过程。而是富有灵活性、创造性、技巧性和艺术的心理信息交换过程。下面就我多年的教学实践,谈一谈如何用好脑、手、口、眼、耳、脚等 方面的艺术。
一、脑要灵(智要高)
首先,教师在课堂 中要有很强的应变和思维能力,一名优秀的或合格的中学数学教师,首先应具有较高的智力,这是理科教师的共同特点。一个的智力越高,就越有利于钻研教材、研究问题,也就越容易掌握知识,积累知识,扩大知识面,从而促进能力的提高,也促进智力的发展,所以说智力是能力的知识的载体。同时,一个教师有较高的智力,能使他在教学中有较强的思维应变能力。一堂课内,面对意外情况,教师反应敏捷,善于猜测学生的思维动向,估计这种思维
(一)强化思维广阔性的训练,教会学生善于全面、完整、多角度、多方位地考虑问题。
(二)强化思维深刻性的训练,教会学生善于抓住事物间的内在联系和本质特征,透过现象察看本质。
(三)强化思维敏捷性的训练,教会学生善于联想、灵活地转换、调整自己的思维过程,快速作出正确判断、推理。
(四)强化思维批判性的训练,使学生不盲从,有独立的见解,敢于怀疑和积极探索事物发展的客观规律和客观真理。
(五)强化思维创造性训练,使学生在认识事物本质、内在联系中善于发现新问题,标新立异,创造新东西。
二、手要巧
这是指教师的课堂板书和手势运用艺术。课堂板书一定要做到四性:计划性、完整性、针对性、艺术性。具体地说,书写工整,标题醒目,重点突出,条理清楚,字迹清晰,简繁适中,布局合理,格式规范,画图纯熟,比例协调。为此:
(1)要选例典型,以少胜多,简明扼要,起到言传身教的作用。
(2)对数形结合问题。要重视草图,增强直观,防止遗漏,避免错误。(3)多种问题一气呵成,要提示解题捷径。
(4)注意布局合理,知识串联递进,思维散发疏通。
三、口要利
这是指教师在课堂上能说会道。在数学 教学中,叙述概念、法则、定理和公式、可分析 瓿,或进行逻辑推理,教师要能清晰、准确、生动形象地表达自己的思维。要有确切、简练、
通俗的教学语言,应该做到“丰而不余一言,约而不失一词”。把教师输入、储存、变换地的信息准确 无误在传给学生。遵循教学规律,“以平易之语解极难之法,浅近之言达深之理”。语言严谨、用词确切,脉络清楚,简明扼要,深表浅里,层次井然,有趣逼真,恰到好处。总之,教师的课堂教学的一切语言都成为学生学习的楷模。
四、眼要尖
这是指教师在课堂上要眼观六路。
课堂上,教师不要老看着课本一味地讲和写,眼睛要经常注视全班学生,留神他们的各种听课的神态。是听懂了的满意表示,还是听不懂的苦恼表情,是思维跟上了的轻松神态,还是正在思考的严肃表情,从中掌握有多少学生未能理解,又有哪些学生根本听不懂,理解不了,哪些学生全神贯注地听课,哪个学生准备开小差,做别的功课或看课外书籍等等。
㈨ 数学和艺术的关系论文
摘 要:数学本身就是一门艺术,艺术的美是与数学分不开的。研究数学的艺术价值有利于促进数学的认识与传播,有利于提升艺术的创造力和想象力,有利于培养科学的审美观和价值观。
中国论文网 /1/view-5192636.htm
关键词:数学 艺术 价值
古代哲学家、数学家普洛克拉斯断言:“哪里有数,哪里就有美。”开普勒也说:“数学是这个世界之美的原型”。对数学的艺术追求已成为数学得以发展的重要原动力。数学与艺术之间似乎找不到它们之间的必然联系,然而,数学与艺术都是美丽的,并有内在联系。因为几乎人类的一切学科领域都或多或少用到数学,艺术也不例外。其实数学既是一门科学,其本身也是一门艺术,而数学所展现的和谐美与简洁美影响了很多艺术流派。
一、数学与绘画
在欧洲艺术创作领域公认有两次最大的创新,一次是文艺复兴,另一次是本世纪初兴起的现代艺术。两次大的变革都与几何学的变革有关。前者与三维透视几何有关,后者与N维几何和非欧几何有关。
每一时代的主流绘画艺术背后都隐藏着一种深层数学结构――几何学,在达芬奇那里是讲求透视关系的射影几何学;在毕加索那里是非欧几何学;在后现代主义、纯粹主义那里也许是现在说的分形几何学。其实,对于数学关系在艺术品中的重要性,向来就被一些美学家和艺术家所肯定。古希腊着名数学家毕达哥拉斯就提出“美在和谐”的观点,这其中“和谐”里很重要的一种数学关系,被毕达哥拉斯学派称为“最美妙的东西”,从而他们认为只要恰到好处地调整好数量比例关系,建筑、雕塑、书法甚至音乐、舞蹈等就能产生最美最和谐的艺术效果。通过我们的视觉就能感受到一种完美。如作品米洛斯的阿芙洛底德、雅典卫城等无不蕴含丰富而又协调的数学比例关系。
最让人感到美与和谐的比例就是黄金分割比――0.618。很多让人们感到很美的东西,比如海螺,其中都有不少奥妙,它的螺纹是遵循黄金分割的!还有一些艺术作品,几个简单的几何体,可是却让我们为之着迷,这是因为它也运用了黄金分割等数学上的手法。
把黄金分割比应用于绘画中的例子很多,其中最有名且最先开始的可能就是着名的艺术家达�9�9芬奇了。他之所以成为一位伟大的艺术家,是因为他首先就是一位了不起的数学家。他潜心研究人体结构,他发现了隐藏在人体中的数字与比例,并将这些应用于他的艺术作品中,使得他画笔下的人物都栩栩如生,百看不腻。如果你仔细去研究他的最有名的几幅画,《最后的晚餐》《蒙娜丽莎》等,你肯定会惊喜的发现里面蕴藏了太多的黄金分割了!
二、数学与音乐
音乐是心灵和情感在声音方面的外化,数学是客观事物高度抽象和逻辑思维的产物。那么,“多情”的音乐与“冷酷”的数学也有关系吗?我的回答是肯定的。数学与音乐之间有着某些相似之处,在一个音乐家的表演水平得到评判以前,首先要确认一个起码的前提:他的音是准的,仅仅是音准并不能使他成为一个音乐家。就象是对一位历史学家的着作只能评判说他没有说瞎话,也是不得要领的。
数学和音乐是人类精神两种最伟大的产品。它们全然是人造的两个金碧辉煌、自己自足的世界,前者仅用了十个阿拉伯数字和若干符号就造出了一个无限的真的世界,后者仅用了五条线和一些蝌蚪状的音符就造出一个无限的美的世界。
《春江花月夜》和肖邦小月曲的旋律也是不存在与自然界中的,在大自然中,你绝不会听到类似于人造的、另人着迷的音乐,因为它是你的心声,在数学里,n维空间、无限空间等人造的世界,甚至是“2”、“直线”、“平面”也都是人类精神最抽象的产物。并且,肖邦很注意乐谱的数学规则、形式和结构,有位研究肖邦的专家称肖邦的乐谱“具有乐谱语言的数学特征”。
我国伟大的思想家孔子曾提过六艺“礼、乐、射、御、书、数”,其中“乐”就是指音乐,“数”就是指数学,这样,孔子就已经把音乐和数学并列在一起了。
1952年12月在武汉召开的全国聂耳、冼星海作品研讨会上,武汉音乐学院院长曾宣读了一篇引人注目的论文《论义勇军进行曲的数列结构》,该文整个建立在数学基础上,从而提出了一种突破传统式结构理论的观点,论文的新颖不仅引起了轰动,而且引起了音乐工作者的思考,都认为数学和音乐之间可能有一种深奥的内在联系。
三、数学与文学
文学和数学看似风马牛不相及的两条道上跑的车,但是其实数学和文学有着奇妙的同一性。文学是以感觉经验的形式传达人类理性思维的成果,而数学则是以理性思维的形式描述人类的感觉经验,文学是“以美启真”,而数学则是“以真启美”,虽然方向不同,实质则为统一,主要表现在符号上的统一。
数学入诗,使人情趣盎然。如“一去二三里,烟村四五家,楼台六七座,八九十枝花。”宋人邵康的这首诗生动地描写了自然朴实的乡村景象,宛如一幅淡雅的水墨画,然而它却有一半是用数字写出的,诗意的美隐含在数的和谐之中。下面分别是一至十起头的唐诗名家诗句,颇有韵味:
一片冰心在玉壶(王昌龄),两臣开济老臣心(杜甫),
三军大呼阴山动(岑参),四座无言星欲稀(李顺),
五湖烟水独忘机(温庭筠),六年西顾空吟哦(韩愈),
七月七日长生殿(白居易),八骏日行八万里(李商隐),
九重谁省谏书函(李商隐),十鼓只载数骆驼(韩愈)。
中国文化源远流长,积淀十分深厚。古圣和先贤给我们留下了丰富的文化遗产。诗、词、曲、赋、传奇、小说、散文中,名句佳作如林。值得注意的是,他们中间往往嵌着数。诗文中的数字又似点睛之笔,犹如夜空的星辰熠熠闪光。
四、结束语
张继平教授说:美,是人性的追求,是人类进步的一大动力。艺术是美的表达方式,数学是美的语言,数学追求美,也创造美。数学与艺术的结合使美更加简明。在我们的生活中,处处充满艺术的气息,同时也着弥漫数学的魅力。也许,曾经我们认为数学是枯燥无味的。但是现在,我们要改变我们过去的观点。数学是一门艺术,是生活中不可缺少的艺术。
㈩ 数学与美术的关联
美术中蕴藏着数学。绘画艺术中三维现实世界在二维平面上的真实再现,需要依据几何学中的透视理论,因此,艺术家们对透视理论进行了研究,提出了将几何原理应用于绘画的数学透视法。同时,对同一物体在不同平面上的投影的特征的思考,成为射影几何的出发点。以分形几何学为理论基础的计算机图形学为艺术家的创作和想象提供了更广阔的空间。利用它创作出的作品是一些形态逼真、充满魅力的分形图形,如分形山脉、分形海岸线、分形云彩、分形湖泊、分形树林,这些作品所表现出来的精湛的技艺,令人赞叹不已。