导航:首页 > 文化传统 > 数据驱动如何打造文化

数据驱动如何打造文化

发布时间:2022-08-10 15:38:17

❶ 数据分析技术给商业模式带来颠覆的五种方式

数据分析技术给商业模式带来颠覆的五种方式
近年来,越来越多大型企业开始投资数据分析技术,希望借此证明“我可以做得更好”。而云计算的兴起,也使得规模有限的初创企业也可拥有将大数据技术与高级数据分析加以结合的能力。在今天的文章中,我们将共同探讨数据分析技术给商业模式带来颠覆的五种方式。
2017年10月10日,腾讯宣布斥资11亿美元投资奥莱,这是匹马市场的头号玩家。但奥拉并不孤单挑战既定的商业模式。

看看优步,亚马逊,Airbnb,edX,Netflix,Society One和TripAdvisor的兴起。他们都看着自己的行业中的一个坚定的人,并说:“我可以做得更好。”
80%的公司预测他们的行业在未来三年将受到新技术的影响。
借助云计算,即使是最小的启动,也可以将大数据技术与高级数据分析结合在一起。每天,发现新的运营和市场见解以及未开发的客户群的能力都在增长。
超过90%的公司认为大数据和分析是战略重点,但贝恩说,只有19%的公司持续采集高质量数据!
大多数竞争对手可能没有利用数据技术,但是你呢?如果你懒惰,你可以保证有一个开始或创新的竞争对手把你的目光投向了你。
数据的力量
大数据已经成为一种强大的资源。如果盲目瞄准潜在客户,公司就无法取得成功。为了蓬勃发展,你需要确切地知道你要去哪里,为什么要去那里,以及你愿意投入到旅程中的努力。
大数据是你的指南。
但是,您需要有清晰的愿景,战略方法和用例来推进您的大数据发现。您需要参与使用分析,以便您拥有整体视图或业务。
要做到这一点,请重新定义如何处理数据并为数据的使用设置基准。
5种方法来挖掘变革性数据
1.战略分析
战略分析是详细的,数据驱动的整个系统分析,以帮助您确定推动客户和市场行为的因素。
战略分析的关键是按照正确的顺序进行:
第1步 - 竞争优势分析以确定您的能力,优势和劣势。
第2步 - 企业分析可在企业,业务单位和业务流程级别获取诊断信息。
第3步 - 人力资本分析在个人层面进行诊断,以获得可操作的见解。
数据应该回答如下关键问题:
什么是为我们带来最大价值的关键决策?
尚未开采的新数据有哪些?
尚未完全探索哪些新的分析技术?
2.平台分析
这有助于您将分析融入您的决策过程中,从而改进核心业务。它可以帮助您的公司利用数据的力量来发现新的机会。
要问的重要问题包括:
我们如何将分析整合到日常流程中?
哪些流程将受益于自动,可重复的实时分析?
我们的后端系统能否受益于大数据分析?
平台分析必须包含多种技术。由于它可以通过多种格式和渠道获得,因此可用于检查组织的脉搏。
它将帮助您将数据分析整合到所有部门的关键决策中,包括销售,市场营销,供应链,客户服务,客户体验和其他核心业务功能。
3.企业信息管理(EIM)
将近80%的重要商业信息存储在非托管存储库中。通过战略和平台分析,EIM可帮助您利用社交,移动,分析和云技术(SMAC)改进数据在公司内的管理和使用方式。
通过使用信息创建,捕获,分发和消费工具构建敏捷数据管理操作,EIM将帮助您:
简化您的业务实践。
加强协作努力。
提高员工在办公室内外的工作效率。
在定义您的EIM战略时,确定业务需求,关键问题以及启动EIM的机会。此外,确定潜在的项目和项目,其成功率将受益于EIM。
4.商业模式转型
采用大数据分析和并行转换业务模式的公司将为收入来源,客户,产品和服务创造新的机遇。
从预测需求和采购材料到会计,以及员工的招聘和培训,您的业务的每个方面都可以重新设计。
所需的更改包括:
拥有大数据战略和愿景,能够识别并利用新机会。
培养创新和实验数据的文化。
了解如何利用新技能和新技术,并管理他们对如何访问和维护信息的影响。
与持有重要数据的消费者建立信任关系。
在核心行业内外创建合作伙伴关系。
找到快速洞察和实施结果的方法。
5.建立以数据为中心的业务
您是否生成大量数据?这些数据是否会使您行业内外的其他组织受益?
以数据为中心的业务不仅仅是一种资产,而是货币。这是您核心竞争力的源泉,它的价值体现在黄金上。
主要有三类数据分析:
透视:包括挖掘,清理,群集和细分数据,以了解客户及其网络,影响力和产品洞察力
优化:分析业务功能,流程和模型。
创新:探索新的颠覆性商业模式,以促进客户群的发展和成长。
已建立的商业模式受到攻击
数据分析正在迅速推翻我们开展业务的方式。这五种数据分析的变革性应用将帮助您成为具有前瞻性思维的公司,并在市场中获得竞争优势。
没有哪个行业的数据分析不能从中受益。

❷ 数据驱动研发 宝马公布三大数字化战略

[汽车之家行业]?10月12日,宝马在线上举行“2020宝马中国数字化体验媒体沟通会”,详细介绍了宝马在中国“以客户为中心”、“用数据赋能”和“打造适应数字化进程的组织”的数字化战略。

宝马集团大中华区总裁兼首席执行官高乐表示:“数字化早已渗透到宝马的研发、制造、车机端数字化体验以及包含无数接触点的客户旅程之中,其核心是利用数字化技术和创新成果为客户创造价值。我们的目标是创造车内车外一体化、线上线下一体化、端对端的高档品牌体验。当下,宝马在中国正在数字化的道路上快步迈进。”

大规模车辆远程软件升级让汽车“保鲜”

2012年,宝马就开始在中国市场引入“互联驾驶”功能和服务。在OTA远程软件升级方面,目前有1400万辆宝马汽车已经实现联网,2018年以后的所有新车型都具备OTA能力。

从今年4月开始,宝马陆续向全球超过50万辆配备第七代BMWiDrive智能人机交互系统的车辆推送OTA升级,是迄今为止欧洲汽车制造商中规模最大的远程软件升级,其中在中国市场涉及20多万辆,包括全新宝马8系和宝马3系在内的多个车型系列。

数据驱动研发,革新组织架构及体系文化

在全球,宝马已经拥有超过7000名信息技术领域专业人才。2020年10月1日起,宝马集团成立“数字化汽车(DigitalCar)”部门,将自动驾驶及驾驶辅助、智能互联及数字化服务等所有数字化相关研发业务集合为一个部门,促进数字化研发力量的内部整合。

中国市场是数字化发展的引领性市场,宝马在不断拓展与领先科技公司合作的同时,已在中国建立了德国之外最大的研发体系,在中国的1100多名研发人员中软件开发团队超过400人,并专门在中国设立了用户界面和用户体验设计开发团队,专为探索中国客户对于数字化体验的需求,并设计和验证适合中国客户的人机交互方式,快速响应中国市场的客户需求。

高乐总结道:“数字化不仅是技术的变革,归根到底是整个组织架构、管理体系和企业文化的改变。这个旅程任重道远,而我们正在这一征程中全力以赴。”(编辑/汽车之家杜俊仪)

❸ 数据驱动的思维方式包含哪五个方面

每日干货好文分享丨请点击+关注

欢迎关注天善智能微信公众号,我们是专注于商业智能BI,大数据,数据分析领域的垂直社区。

对商业智能BI、数据分析挖掘、大数据、机器学习,python,R感兴趣同学加微信:fridaybifly,邀请你进入头条数据爱好者交流群,数据爱好者们都在这儿。

本文作者:天善智能联合创始人&运营总监 吕品,微信:tianshanlvpin,原文发表于天善智能服务号,欢迎讨论交流。

开篇语

看过不少讲解大数据思维的文章,文章的一些观点能够带给我很多的启发,很有见地也很受用。在跟一些企业的负责人聊起大数据项目规划和建设的时候,发现大家对大数据并不缺少自己的认识和看法,只是这些认识和看法没有被系统性的组织起来,形成一个比较有深度的思考问题、解决问题的套路。

这篇文章结合我在和一些朋友沟通过程中看到的一些问题,将大数据思维和价值做了一些聚焦和分解。我来抛砖引玉,希望这篇文章能够让大家从另外的一个角度去了解和思考一下到底什么是大数据思维和价值。

这篇文章适合企业高层、即将或者正在规划大数据项目、思考如何对大数据进行顶层设计、大数据项目管理人员一读。作为补充,我在此也推荐几篇文章以丰富大家思考问题的维度(角度):

【概念篇】大数据思维十大核心原理

【分析篇】趋势 | 大数据应用落地分析

【案例篇】深入解读民生银行阿拉丁大数据生态圈如何养成

【案例篇】大数据如何聚焦业务价值,美的大数据建设的启发

本文作者:吕品 天善智能联合创始人

本文整理自 2017年3月3日 美云智数新品发布会数据云分论坛吕品的演讲内容

人人必谈大数据

说到大数据,大家并不陌生,从各种自媒体、线上线下沙龙,包括生活中大家经常提起。早在 2010 年之前,国内的很多互联网公司都已经在处理 “大数据”,只不过那时对大数据还没有一个清晰的定义。2013 年起,我们注意到在国内大数据这个词开始火了,火到什么程度? 举个例子:我每次回家,家里的亲人朋友都在问我是做什么的,我说我们是搞商业智能 BI 的,基本上听不懂。什么把数据变为信息、信息产生决策,什么 ETL、报表,几乎是懵圈的。后来提了一句,我们有一个技术网站,里面都是玩数据的,比如大数据、数据分析、数据挖掘...。“大数据啊!大数据我知道!”,我问什么是大数据,回答很简洁干脆:“大数据就是数据大呗!”。

其实这种理解不能说错,只能说不全面,但是从某种角度上来说大数据还是比较深入人心的,“大数据”这三个字起到了一个很好的名词普及作用,至少不会像商业智能 BI 那样很难用一句或者几句话让大家有个哪怕是很基础的概念。

大数据 4V

我们经常提到的大数据四大特征:4个V

Volume 数据容量大:数据量从 GB 到 TB 到 PB 或以上的级别。
Variety 数据类型多:企业在解决好内部数据之后,开始向外部数据扩充。同时,从以往处理结构化的数据到现在需要处理大量非结构化的数据。社交网络数据采集分析、各种日志文本、视频图片等等。
Value 价值高,密度低:数据总量很大,但真正有价值的数据可能只有那么一部分,有价值的数据所占比例很小。就需要通过从大量不相关的、各种类型的数据中去挖掘对未来趋势和模型预测分析有价值的数据,发现新的规律和新的价值。
Velocity 快速化:数据需要快速处理和分析。2010年前后做过一个美国医疗保险的数据迁移项目,有一个 ETL 需要处理该公司几十年的历史文件和历史数据,文件数据量很大,并且逻辑非常复杂,一个流程几十个包,一趟下来 35 个小时执行完毕。这种情形如果放在现在的互联网比如电商平台很显然是不允许的。比如像电商促销、或者要打促销价格战,实时处理传统的 BI 是无法完成的。对有这种实时处理实时分析要求的企业来说,数据就是金钱,时间就是生命。
我相信上面提到的大数据的四个 V、核心特征还是比较容易理解的。如果我们不是站在技术层面去聊的话,大家对大数据或多或少都会有一些比较接近和类似的看法,并且在理解和认识上基本也不会有太大的偏差。

但是当我们谈到大数据,大家真正关心的问题在哪里呢? 从技术角度大家可能关心的是大数据的架构、大数据处理用到了什么样的技术。但是站在一个企业层面,特别是在着手考察或者规划大数据项目建设的负责人、企业高层来说,更多关心的应该是下面这几个问题:

1. 大数据到底能帮我们企业做什么,或者说能够带给我们企业什么变化。上了大数据对我们有什么用,会有什么样的改变,是经营成本下降、还是帮我们把产品卖的更多?

2. 我们的企业现在能不能上大数据?如果不能上大数据,为什么,那又需要怎么做?

3. 我们企业也想跟随潮流上大数据,问题是要怎么做。需要准备什么,关于投入、人才、还缺什么、需要用到什么样的技术?

4. 我们怎么验证这个大数据项目是成功还是失败,我们判断的标准是什么?

我相信这些问题都是大家比较关心的一些点,包括我自己。我们目前还是以 BI 分析为主,但我们也会去爬一些外部的数据,后面也在规划大数据相关的一些项目和开发。

当然大数据这个话题是非常大的,我们很难从一个或者两个角度把这些问题回答的非常全面。但是我觉得有一点是我们的企业高层或者决策者可以注意的:在规划和考虑大数据的时候需要具备一定的大数据思维,或者说是面对大数据时我们所要具备的考虑问题和看问题的角度。

大数据思维方式

大数据思维方式我简单概括为两个方面:第一个是以数据为核心、数据驱动的思维方式。第二个是业务核心,业务场景化的思维方式。

以数据为核心、数据驱动的思维方式包含这几个方面:

1. 尽可能完善自己的数据资源。我们手上握有什么样的数据资源,我们数据资源的质量如何?

企业需要关注和梳理我们有什么样的数据,以前是关注企业的流程,IT的流程、业务流程再造。现在大多数企业这些 IT 基础和应用的建设都已经完成了,更加关心的应该是在我们的企业里到底握有什么样的数据资源,在不同的行业我们的数据主题是不一样的。

比如电商零售行业,我们考虑更多的可能是消费数据、涉及到用户、产品、消费记录。因为我们可以围绕这些数据比如做用户画像、精准营销、定制化的产品、产品的市场定位分析等等。

比如制造生产行业,我们涉及更多的数据可能是产品本身、我们的生产流程、供应商等。因为我们可以围绕这些数据比如做我们的生产质量检查、降低生产成本、工艺流程再造等。

只有了解我们目前自身的数据资源,才能知道我们还缺少哪些数据资源。而这些缺少的数据资源从哪里来,如何获得,就是我们在规划大数据项目的时候是需要解决的。如果缺乏这种意识,等在规划和上大数据项目的时候你的大数据资源非常有限的。

2. 增加数据触点、尽可能多的去收集数据,增加数据收集和采集渠道。大数据的建设和大数据分析它是一个迭代的过程,很多的分析场景都是在不断的探索中找出来的,它有一定的不确定性。正是因为这种不确定性所以才需要我们尽可能收集更多的数据。

现在是移动互联网时代,人人都是数据的生产者和制造者。比如每天的社交数据、互联网点击网络的数据、刷卡消费的数据、电信运营、互联网运营数据。像我们的制造和生产行业,有自动化的传感器、生产流水线、自动设施的数据等。有些数据放在以前可能不值钱,但是现在看呢?这些数据现在或者在将来的某一天就会变得很有价值。

比如像我最开始提到的那家美国医疗保险公司,我看过他们的 COBOL 代码注释都有是七几年、八几年前的。他们积累了几十年的数据,突然在 2010 年前后开始意识到数据的价值了,开始通过数据进行一些变现了。之前知道这些数据的价值吗?不知道,但是尝试到数据的甜头,比如做自己的数据分析,咨询机构购买一些脱敏的数据,或者给咨询机构提供数据做市场研究用途。

所以大数据的构建不会是一天两天的,这个过程会持续很长的时间,我们需要为将来做准备。所以如果你的公司连个最简单的业务系统,IT 应用系统都没有,数据连存放的地方都没有,怎么能够上大数据呢?不合理。

数据越多,数据种类越丰富,我们观察数据的角度维度就越丰富,我们利用大数据从中就能够发掘出以前更多没有看到的东西。

3. 数据开放和共享思维。这一点在我们国内其实说起来很容易,但是实际上很难。

去年的时候我去看了一个市公安局的大数据项目(可参看这篇文章 政府大数据面临的问题和阻力在哪里?),他们有两点意识非常好:

1)非常清楚的知道自己拥有哪些数据资源。比如市公安局以及下属分局、各个支队各个应用系统的数据:基础的人口管理、信访、犯罪信息、情报。包括数据监控所涉及到的铁路、网吧、民航购票、ETC 卡口等。

2)为了纳入更多的社会化数据资源、实现全行业的数据覆盖,他们准备接入交通、服务、科技信息化、教育、社保、民政等各个行业的数据。包括他们给下面的单位下了数据的指标,每个单位或者每个民警都有这种收集数据的指标,比如哪个单位今天上传了什么样的多少数据,每个月哪个单位上传的最多,这都是很好的数据收集的意识。

但问题在哪里?问题在于很多机构比如银行受国家政策限制很多数据是没有办法共享的、还有像教育机构,我凭什么把数据给你,在行政上大家是并级的机构。

所以这个时候就需要考虑数据开放和共享的思维,在满足数据安全性的基础之上我们可以不可以考虑数据互换共享的可能。公安局有的数据一定是教育机构没有的数据,那么同样的教育机构有的数据,公安机构也不一定有。如果两者数据在某种程度上形成共享,在保证数据安全和不冲突的情况下是可以创造出更多的社会价值的。比如公安局可以提供教育机构关于各个地区犯罪率的信息,包括交通安全事故多发地等,教育机构可以针对

❹ 大数据时代 重构文化空间的人文向度

大数据时代:重构文化空间的人文向度

随着大数据时代的来临,人们在虚拟空间与物理空间的杂居,以及“拟态环境”对文化空间的重构,导致了知识在获取、存储、交流、再生产等诸多环节发生深刻变化。如何面对由此带来的挑战成为摆在广大学者面前的重要课题。

大数据时代首先带来了传播话语权的迁移。在印刷时代,知识分子常常是报纸书籍等纸媒话语权的拥有者。比如,民国时期的《新青年》、《新潮》、《语丝》、《晨报·副镌》等报刊,其编者常常具有大学教师、编辑、作家等多重身份,这为他们重构文化空间、进行文化启蒙打下了重要基础。而在大数据时代,由于媒介身份和教育身份的分离,当今学者难以形成占据主导地位的话语权。文化话语权逐步从传统学者移至媒介巨头,尤其是以电视、网络等现代传播手段为代表的传媒机构。无论如何,大数据重构了文化传播的空间形态,也打破了原有的话语体系平衡,缔造出新的话语权分布,进而带来了一个迫在眉睫的问题:作为掌握媒介话语权的传媒机构如何重塑文化价值空间?从目前看,媒介文化产业正迅速崛起、快速发展,但由于从业人员的芜杂,资本力量渐渐成为传媒文化的主宰。特别是在资本逻辑的驱动下,文化的价值向度被严重剥落。不仅如此,媒介偏好也是一个重要原因。印刷文明推崇客观和理性的思维,同时鼓励严肃、有序和具有逻辑性的公众话语。而大数据不仅用视像渐渐取代传统文字,还使信息变得海量且混杂无章,这导致公众话语变得散乱无序。正如尼尔·波兹曼的喟叹:这是一个“娱乐至死”的时代。因此,在大数据时代,广大学者必须积极应对文化空间和教育背景的深刻变化,特别要处理好“为学”及人文教育等问题。

首先,就为学而言,在印刷媒介时代,藏书、购书与纸媒阅读常常是文人学者为学的主要方式。民国时期,学者家中的藏书一般都要超过上万册,据邓云乡回忆:“教文史的大教授通常都藏书几万册”。“据统计,现存鲁迅藏书有4062种,约14000册,其中中文书籍2193种,外文书籍1869种,包括中文线装书、中文平装书、俄文书、西文书、日文书等。”可以说,鲁迅的文学及学术成就与其藏书、借书乃至抄书密不可分。而在知识的交流与传承上,也多是通过课堂、宴饮、聚会、拜访等方式进行。比如20世纪30年代的北京,林徽因的“太太客厅”、朱光潜的“读诗会”、《晨报·副镌》“沈从文们”的聚会等都是当时为学交流的典型代表。

而在大数据时代,人们足不出户就可以查到各地的藏书状况及学习资源,国内外开放的网络数据资源使知识获取更为便捷迅速。数字化出版的崛起更是重新塑造了人们的交流方式、交流对象和文化传递模式。在知识的存储上,电子图书具有纸媒所不具备的携带方便、易于查询等长处,实现了从古昔的汗牛充栋到当今的大容量可移动介质的重大转变。在知识的交流上,网络的发展提供了更多的交流机会,E-mail、博客、微博、论坛、微信等网络平台已经成为日常交流的重要方式,而知识的分享、交流和传递也更为迅速和便捷。在知识的再生产上,海量网络资源为人们的书写记录提供了重要平台。比如,部分史料在搜集、整理、编写、保管、出版、传播等环节开始趋于数字化发展。由此可见,大数据时代的“为学”方式较纸媒时代已经发生很大改变。随着“数字鸿沟”的不断拉大,广大学者除了要秉承传统的为学精神,还要不断学习新的知识获取及交流方法,使自身的学术研究不断适应时代的发展要求。

此外,人文教育也是必须面对的一个问题。30年前,尼尔·波兹曼在谈到电视对美国教育的影响时指出,“美国目前最大的教育产业不是在教室里,而是在家里,在电视机前。”这种警醒亦如当下的大数据之于教育。传统课堂传授的知识备受各类现代传播媒介的信息冲击,学生获取知识及价值认同的途径已发生重要改变。大数据时代使得我们的教育变得越来越“教条化”。这就要求人文教育工作者既要注重网络传播的伦理规范,还要加强高校自身的职责建设,推动网络新媒体与传统教学资源的有机组合。

以上是小编为大家分享的关于大数据时代 重构文化空间的人文向度的相关内容,更多信息可以关注环球青藤分享更多干货

❺ 企业实施大数据的路径

企业实施大数据的路径

企业实施大数据的具体的建设路径有两个方面,一方面是自下而上,另一方面是自上而下。
自上而下
自上而下的路径,首先是有序地在管理层建立数据的决策文化,在企业文化层面建设起数据的使用意识,然后建立对应的组织架构、对应的部门和团队,确定需要招聘什么样的人进来、需要多少人、具体职责怎么划分,最后建立起对应的技术平台。
自下而上
自下而上第一是让员工学习和掌握相关技术技能,可以通过内部培训,也可以通过外部招聘。第二,要有规划地设计,以后系统怎么走、怎么做, 要有一个长期的规划。第三,要有明确的绩效考核的指标,数据的管理、质量的管控、效益怎么保证。第四,在思维上要保持一个开放的态度,互联网时代大数据还在发展的初期,一般认为大数据在企业的应用还处于幼儿园阶段,这个时候还有很多东西要学习,必须保持一个开放的心态,不断地学习,才能真正把事情做好。
(一)建立企业的数据文化
文化是企业看待事物的价值观和执行行动的衡量标准。建立数据文化就是要在整个企业层面建立一种以客观的数据为决策依据和衡量标准的价值观和制度体系,为企业能够真正利用大数据产生价值提供基础。没有这个基础,企业即使拥有再好的技术和资源,也无法利用好它们来为企业服务。
什么叫企业数据文化?它包括六个方面的内容。
第一,数据文化主要体现在数据驱动决策,决策主要通过数据来说话。
第二,企业运行效率的分析。一方面,通过对数据进行深度分析,可以像望远镜一样了解企业各方面的运营情况,另一方面,数据可以像显微镜一样去观察企业运营的细节,找到以优化的地方。
第三,通过数据来分析营销规划的得失。通常企业做促销活动,销售量提升了就觉得是成功了,但是促销是有成本的,销量提升了,是不是真的就带来效益了呢?
第四,在以人为本的时代,企业对员工的人身安全和健康的责任越发重大了。如果能通过客观可衡量的数据,关注员工的工作环境和舒适性,对保障良好健康的工作环境、提升员工的满意度将起到非常重要的作用。
第五,员工绩效,必须要有一个数量化的指标。
第六,价值链中的数据管理。在纵向供应链中通过数据的分享和交换,可以更好地让供应链上下游的企业了解整个供应链上的需求、库存和供给,从而可以优化链条上的库存,主动发起供给的准备,更快地应对市场的变化。在横向生态链中,通过分享和交换数据,可以在全方位生活场景中对用户进行分析,从而打造出满足用户更广泛需求的一站式服务,不仅可以挖掘出更多的商业机会,而且增强了用户的粘性。
(二)建立企业的数据战略
建立企业的数据战略,需要建设三个方面的内容,如下图
数据模型
第一个方面是建立完整的数据模型。数据模型的目的是正确地定义数据,对数据进行分类和确定数据交互之间的标准。将对企业业务管理的理解,转化为数据的要求,从而理解到底什么样的数据需要管理。不同的系统产生不同的数据,各系统之间的数据和数据之间互相交互的内容是什么。企业内部有不同的系统,ERP 系统、供应链系统、CRP 系统等,用户信息放在哪,供应商信息、物联网信息、财务信息分别放在哪,他们之间怎么协调,怎么沟通?这些都是需要考虑的问题。
数据服务
第二个方面是建立数据服务体系,包括选用什么样的技术平台、采用什么样的数据技术,不同的系统如何使用这些不同技术,包括传统的数据库、数据仓库、商业智能、新型的 Hadoop 等。基于业务架构的设计,来设计数据应用的架构,然后通过数据交互接口来交换数据,从而避免出现数据孤岛,同时建立统一的数据规划,确保数据源的统一和一致性,为后期的数据分析提供支持。
数据管理
第三个方面是建立数据的治理体系。数据治理包括数据的管理制度和整体生命周期的管理。数据正在成为一种资产,与此相对应的,资产需要体系化的管理。数据的资产权利管理,包括确定数据的所有权、确定每个数据的所有者、谁是这个数据的管理者、谁来负责这个数据的准确性、谁来保障数据的质量,等等。数据的高质量是进行数据分析的基础,数据如果是错误的,怎么分析都不会有正确的结果。同时,数据的合规和安全的管理也是核心环节,比如谁可以操作数据、谁负责数据的安全、备份和服务等,一个严格的数据的合规和安全管控制度是必不可少的。
数据的生命周期管理,包括如何和何时建立数据、什么时候可以修改、谁批准修改、数据如何消除等。国内的企业这方面做得比较欠缺,不只是数据,还包括设备、电脑等,电脑报废了不能用了,就直接丢弃。在这方面,国外企业做得不错,国外信息安全的企业, 通常会花钱请第三方公司来进行专业的数据销毁的处理,甚至每台电脑花费几百块钱来进行环保型销毁。比如在一些数据消除案例中,数据要用各种方 法来确保被彻底擦除,比如有些企业要求对数据进行格式化七遍,以避免可 能的数据恢复。
(三)建立企业的数据组织能力
建立数据的组织能力,包括设立合适的组织角色的定位、招聘到合适的人员、设立合适的组织结构以及设计合适的责权利,等等。
第一,数据的组织能力,建议有条件的公司可以建立首席数据官(ChiefData Officer)岗位,这个岗位主要是设计整个数据的战略,领导数据战略的落地,以及通过数据和业务管理层进行沟通、对话,传递数据的价值。
第二,数据科学家的作用非常重要,数据科学家研究的是如何用最好、最科学的算法得出最好的结果。同样一堆数据在那儿,十个不同的人在看,十个人看的结果都不同。那么为什么科学家算得准呢?因为他的知识够深入,他了解哪个因素最重要,那么多因素里面他应该选哪部分来分析。数据科学家目前是整个市场上最欠缺的人才,因为同时兼具数据算法专业知识和业务知识的人才是极其难得的。数据科学家可以分为三种类型,第一种是技术型数据科学家,他们是计算算法方面的行家,对各种统计分析技术非常在行;第二种是应用数据科学家,他们对数据架构非常熟悉,熟悉数据在各个系统中的分布,能够很好地把各种数据进行集成管理;第三种是业务数据科学家,这些人对行业知识和企业业务非常熟悉,同时兼具一部分对数据处理技术的了解,能很好地把业务的需要和特征转换成数据的处理要求,同时可以很好地将数据处理结果转换成业务的视角和言语,来传递给业务管理者。
第三,对于一定规模的企业,我们通常建议,企业要建立一个集中式的数据管理运营中心。云计算服务就是集中化管理方式,成本最低、灵活性最高、扩展性最强。
第四,整个数据组织的架构标准不是以技术、产品来交付,而是以商业价值交付为衡量标准。考量数据分析的产出能力,不是数据分析的速度有多快,也不是数据量有多大,而是数据分析的结果对业务到底有没有帮助、是不是有指导意义。这也是所有数据分析的核心价值,也是对大数据中“大”的含义的最核心的衡量标准——“大”到产生业务价值。这个衡量标准对技术组织来说,执行起来有些困难,所以必须建立一个明确的绩效评估标准和价值评估标准,让技术人员能够更多地从业务角度来考虑所做的工作的价值,而不陷入技术优先论的境地。
第五,提升一线人员的业务决策权和数据决策权,建立一个扁平化管理的组织。通过系统化的培训来不断培养员工的数据分析能力。由专业数据分析人员和算法人员设计的数据分析解决方案或者产品,必须以简单易用的方式提供给一线员工,同时更为重要的是,加强相关的解决方案或者数据产品的系统化培训,让更多的员工意识到这些解决方案或者产品的价值,并乐于在日常工作中使用。我们建议数据建模 / 数据产品研发的费用和针对一线员工的使用培训的投入应该是对半分的。为了更好地推进培训,企业还可以考虑成立兴趣驱动的数据协会,让更多的员工加入到该协会中,定期举行培训课程、研讨沙龙以及聘请外部专家做相关分享以开拓视野。
建立了企业的数据组织能力后,企业使用数据的过程如下阐述。
首先搜集数据,从不同地方把数据找到,找到以后选择算法。其次进行业务关联的分析,确定哪些指标、哪些维度是有意义的,这就是数据科学干的事。业务科学家和数据科学家可以分离,也可以整合,大部分企业是一套人马来做,展示成一个业务的可以接受、可以理解的方法,如果单纯是数据展示,可能管理层、业务部门看不懂,这就需要转换成业务管理者可以理解的语言和信息。最后,提交给管理层或者是对应的部门作商业决策。这就 完成了一个完整的价值交付。
在上述的数据处理过程中,数据团队中有不同的岗位来执行对应的工作。在数据的采集和清理环节,主要是数据管理员,包括企业内部的数据抓取, 外部的微博、淘宝、第三方电信等的数据采集,数据很多,需要做清理,把一些没有用的数据处理掉,留下来有效的数据,这主要是数据管理员要做的事情。接下来是数据科学家,选择正确的算法,同时可以根据业务的维度制作各种不同的模型,来得出一个分析的结果。再接下来,还有一个团队是业务分析师,根据这些分析结果,将其转换成业务人员可以理解的语言和展示方法,交给 CDO 和核心管理层、决策层做沟通,帮助他们作决策。作为整个技术平台的提供者,还有一个技术团队做具体的平台搭建,可以自行开发基于 Hadoop 开源的大数据平台,或者购买第三方的系统做管理维护,也可以 直接使用大数据的 SaaS 服务平台来快速建立大数据技术能力。
(四)选择技术平台
企业以往使用传统数据进行复杂分析时,多使用数据仓库和商务智能系统,也就是所谓的 OLAP 系统,对传统数据比如财务数据、用户数据进行抓取、挖掘和分析,然后通过页面展示出来,这是非实时的分析系统。在互联网+时代,要将第三方的社交数据和电商数据,比如微博、电商数据等放进来分析是很难的,因为传统的架构是基于结构化的数据基础上的,而现在更大量的数据是非结构化的数据,传统方式很难支持。这样我们分析数据就碰到一些困难,大数据应运而生,Hadoop 是其中最重要的一个平台。
Hadoop 是一个生态系统,它里面包括了一些计算的系统、数据存储的系统、数据分析的系统,它是阿帕奇组织在 2004 年正式开展的一个项目。Hadoop 是一个非常重要的革命性的应用,因为它是免费发布,让很多人都有机会使用,现在很多企业都是以 Hadoop 开源平台为基础,再由内部技术人员做一些优化来使用。
传统数据和大数据的关系是一个发展和结合的关系。传统数据还是可以分析出对业务有价值的信息,也还是用以前仓库的方式分析,新型数据用大数据的方式分析,两个系统最后进行整合,形成一个后端的解决方案;现在也出现了一种完全集成式的方案,这是最近一两年出现的新的大数据平台,可以同时兼容新的大数据和传统的数据,这种集成式的应用将会越来越多。市场上很多公司的商业套件和 Hadoop 开源的方案有什么区别呢?它们的主要区别是商业套件在性能上做了优化、提 升,在安全上做了增强,它加入了针对对应行业的业务理解,帮助企业预置了建模的方法和工具,但问题是价格比较贵。所以,各种方案的选择是基于企业的实际情况,包括预算和团队能力等因素综合考虑的。
(五)数据的开放和共享
对于数据的来源,企业内部通常不具有大数据分析所需要的所有数据。 2014 年,我国的大数据市场规模 84 个亿,预计 2015 年达到 166 个亿,增长40%。相信随着大数据交易平台的建设,增长还会更多。根据中国信息通讯研究院的研究报告,企业对大数据的认同度,认为“比较重要”的达到 97%,这说明企业对大数据的重要性是有认识的,问题是怎么来落地。企业对待大数据往往关注的是安全性和稳定性。这说明虽然企业已经意识到大数据的重要性,但还是比较保守,对安全的顾虑影响了对数据商业价值的挖掘。随着安全技术的发展以及对商业价值的认识的提高,企业应用大数据、获取和交换数据将会越来越多。安全和商业价值永远是一对需要衡量的关系,它就像速度和成本、速度和质量一样是相辅相成、互相平衡的关系,要同时追求两方面是有困难的,不同时期要有不同的策略。
企业对政府公开数据的需求非常强烈。市场上有很多针对政府数据的创业公司,例如一家企业叫法海风控,他是从法律层面分析企业的信用状态,通过分析企业相关的法律文书,比如这家企业过去数年有没有相关的法律官司、胜诉还是败诉,也包括相关联企业涉及到的法律行为,从这些角度提供风控的判断,这是一个很好的应用案例,这取决于政府的数据公开程度。政府拥有海量的数据,如交通数据、社保数据等,一旦这些数据能够公开,将会带来大量的创业机会,也会给企业带来更多考虑问题的维度,所以企业都希望政府能够尽快地公开数据。
(六)找好切入点,小步快走
关于实施路径,企业或多或少已经有一些数据、有一些系统,这个时候是推倒重来,还是有一些别的方法?数据能够在哪些领域实现业绩的大幅提高?数据能在哪些领域实现企业运营效率的提升?这些问题很重要,一开始就必须提出来。每个重要业务部门和职能部门都需要考虑这个问题,并展开相关的研讨。企业高管实施大数据战略的时候,需要高度重视这一步,但在国内很多企业往往忽略这一方面,投入大数据往往不是以提升业绩为导向,而是以学术为导向,使得很多企业实施大数据战略后,看不到数据对企业绩效的提升,从而使得大数据战略流产。
(七)放眼未来,永远在路上
大数据是不是万能的?是不是永远有效的?大数据的使用有限制吗?正确地认识这些问题,有助于企业更好地利用大数据,更客观地看待大数据。
第一,大数据不是万能的,大数据的使用是有限制的。大数据的使用,首先是在讨论相关性的时候,而在判断、解决一个具体问题的时候,大数据不是最好的方法。
第二,大数据即使大,也不能囊括所有的数据,大数据终究有成本的问题,准确性还不会达到百分之百。虽然它足够可以做预测,但是不是绝对正确的东西。
第三,我们不能过于相信数据,因为有时候数据会解读得不对,所以还要尝试做一个验证,如果这明显和常识相反,你要验证一下你的分析方法否正确。
还有一个问题是数据的安全,数据这么重要,能不能保护好数据,数据使用过程中有一些问题和潜在的风险。
最后的寄语:大数据是文化和技术的结合,最终的目的是产生业务价值。
第一,大数据技术是 IT 驱动业务变革的一个机会,不管从IT 部门本身的定位、IT 对企业产生的作用来说,还是企业能够增强核心竞争力的角度来说,大数据都是一个非常重要的推动力。
第二,应用大数据技术的前提是要有一个数据驱动决策的企业文化,如果用大数据形成了一个报表,企业管理者作决策时根本不看,这就没有意义了。只有当企业建立了数据驱动决策的文化,并真实地执行后,数据的价值才能够充分实现。所以大数据使用的重要前提是企业有数据驱动决策的文化。
第三,数据本身只是一些信息,大数据的价值不在于数据本身,而在于如何通过数据做分析整理,最后产生分析和预测,传递业务价值,这才是使用大数据的目的和核心。

❻ 如何利用数据驱动的方法来降低欺诈风险

在高科技领域,数据是不可或缺的。它可以帮助你更好管理系统和团队,但从数据有效获取价值比拿到数字更难。你需要一种由数据驱动和抉择的文化。通过数据可以让管理者不仅降低正确决策的风险,也更有信心迅速行动。它也提供一种确认选择是否可行的办法。

建立这样文化比口头上简单说说要更复杂。你衡量哪些数据看如何响应看采取什么方法让团队意识到应该把数据摆在首位看

以下是实现可持续发展的数据驱动的企业文化的一些建议,可以让团队在自我完善,也有一些陷阱我们需要注意:

1.确定要测量什么。我们目的是用数据让商业更加灵活有信心。管理层需要了解公司高层的优先级,再选择支持这些目标的指标。如果你不分重要性衡量一切的话,你就会陷入无关紧要的细枝末节。比如对于用户增长的核心指标有注册数,激活率,重新激活率。

2.为实现具体商业及团队目标的相关指标。修复的平均时间(MTTR)是一个不错的性能指标,但它不容易让团队执行。确认事件发生的平均时间(MTTA)是MTTR的一个组成部分,往往更可行。跟踪这两个关键绩效指标,有助于了解团队是如何对总体指标做贡献的。

❼ 如何做好数据驱动运营

核心了解业务,对数据敏感 数据背后的意义逻辑清楚。具体表现为:

每天不仅关心日活、新增,数据精细化运营就及其有必要,比如这个时候我们会增加一次性用户与活跃用户的比例、新增用户留存率、连续N日活跃与当日活跃的占比这些指标,通过这些指标间接佐证产品生命周期是处于增长期、活跃期、稳定期、还是衰退期,如果一次性用户占比比较高、说明产品粘度不够,用户流失率较高、那么就要采用提升回流的方法比如PUSH、短信等一系列热点营销活动,如果新增用户占比趋势区域平缓、既有可能说明产品已经进入稳定器,这时候运营更多考虑保持活跃、如果发现新增用户增值趋势是呈下降、连续活跃占比下降说明产品用户在逐步流失,很有可能进入衰退期,这个时候管理者结合收入指标等其他财务指标判断是否放弃原有产品投入、是否研发新的产品。

❽ 企业如何推进数据驱动文化

企业如何推进数据驱动文化?数据分析工具并非关键
易于使用的数据分析工具将会在企业内部大量使用,对此,分析软件厂商们非常看好。仅仅在过去数月里,我就收到大量新闻稿,都说产品可以“将分析大众化”,主张让数据分析工具变得更加简单,从而解决企业分析工具使用率低的问题。
但是,对于我来说,企业如何推进数据驱动文化,数据分析工具并非关键,真正的症结在于企业的内部文化。
人们更喜欢也更有可能使用简单的工具,厂商的这种观点并不新鲜——而且这是显而易见的。现在推出的工具绝对比十年或是十五年前的那些古董要更加易用。但,工具变得更加简单,使用率却并没有明显提升。
我经常从分析专家们那里听到一句话:在一家企业的所有劳动力中,数据驱动工具使用率的通常顶多也就20%左右。无论是IT部门使用,还是分析团队将工具交付给员工使用,情况基本类似。
数据分析工具也有拦路虎 你能否突破20%使用率的天花板?
有确凿的证据可以证实这一数字,在某些情况下,20%实际上还有些高估。在最近来自Dresner咨询服务公司的一份报告《Wisdom of Crowds BI Market Study》(大众智慧BI市场研究)中,近40%的受访公司说他们公司中不到10%的员工使用数据分析工具,超过20%的受访者表示这一数字在11%到20%之间,仅有不到25%的受访者表示这一数字曾超过40%。
特别值得注意的是,这些数字是低于前些年的。这就意味着即使随着工具不可否认地变得更加易用,它们在一线员工中也不没有更高的使用率。
一线员工为何拒绝使用新型分析工具?原因可能有很多。首先,人们不愿意改变他们做事的方式。同时,在没有看到适当理由的情况下,人们是不会接受新方法的。例如,你如果把一个炫酷、全新、自助的数据分析工具摆在一名营销经理面前,估计她不会去使用。因为是否要使用这个分析工具,取决于分析团队能不能解释清楚,这个分析工具将会如何帮助她更有效地区分客户,或是通过测试比较,证明这个分析工具是最行之有效的。
企业如何塑造数据驱动文化?管理层至关重要
这不仅仅是企业培训教育的问题,它还取决于管理人员需要灌输这样的数据驱动文化,显然,这和数据分析工具没有太多关系。员工们需要知道,数据使用的好坏程度将直接影响自身在企业内部的权重,这样他们就会越来越重视数据驱动化。
我接触过一些数据驱动文化较成功的企业,听到过这样的事情:开会时,如果发言没有数据支持,这样的人没有太多的话语权。管理层会监督谁使用了数据分析工具,并把这作为工作业绩考核的一项指标。管理人员身体力行,让数据说话,而非跟着感觉走。这一过程是需要管理层加以引导的。
可能有些企业领导认为,通过轻松安装一款易用的数据分析工具,企业员工就会突然都变为数据驱动。这样的想法是不切实际的。无论工具多么简单友好,它们本身并无法将那些在日常工作中不使用数据的员工进行重塑改造。对于那些寻求突破20%上限的企业来说,了解为什么数据驱动文化无法推行,如何才能够有效让数据驱动文化落地,这才是重中之重。

阅读全文

与数据驱动如何打造文化相关的资料

热点内容
微信改变我们哪些生活 浏览:1241
创造与魔法沙漠的动物在哪里 浏览:1242
篮球鞋网面为什么会破 浏览:1074
怎么拼升降板篮球 浏览:555
小型宠物猪多少钱 浏览:850
音乐文化课哪个好 浏览:675
到日本旅游如何报团 浏览:993
不在篮球场运球该在哪里练 浏览:1091
台湾哪里能买到宠物 浏览:1047
小动物怎么画才最好看 浏览:915
中西文化和西方网名有什么区别 浏览:1209
养宠物狗一般养多少年 浏览:892
广州黄埔哪里有卖宠物兔的 浏览:781
小米10怎么敲击背部打开相机 浏览:698
渔家文化目的有哪些内容 浏览:1073
海洋中发光的动物都有哪些 浏览:1149
如何消除美颜相机的标志 浏览:1058
篮球罚球为什么不往上抛 浏览:726
天香公园宠物医院洗澡在哪里 浏览:1131
怎么提高中国文化自信 浏览:267