❶ 什么是"数学文化
什么是数学文化
狭义:数学的思想、精神、方法、观点、语言,以及它们的形成和发展。
广义:除上述内涵以外,还包含数学家,数学史,数学美,数学教育。数学发展中的人文成分、数学与社会的联系、数学与各种文化的关系,等等。其实它也是一种文化,就象历史文化。
❷ 数学文化的概念是什么
数学文化 我国数学教学的传统? 在关于“双基教学”的文章里,我们可以看到基础确实很重要。但是基础不仅仅是技能技巧,数学上过分注意技能技巧,津津乐道,回避数学问题的本原, 忽略数学思想的领悟,也是当前数学教 育的弊病之一。这里,我们不妨借鉴音乐方面的情形. 2003年12月23日文汇报记者报道 弹萧邦要尽量多情。有时技巧是音乐的敌人。 记者:“傅聪先生,您曾经说过,现在的年轻人弹奏技巧越来越好,能不能告诉我们,您的潜台词是什么?” 傅聪:“现在很多孩子都是从3岁就开始练琴,练到10多岁,基础打得很扎实,基本技巧好得不得了,连我也很羡慕。但是呢,音乐其实他们懂的并不多,所以我说技巧有时是音乐的敌人,技巧和音乐根本是两码事。” “双基”异化 数学文化:支撑数学的基础 音乐 不等于 音符节拍 美术 不等于 线条颜色 数学 不等于 逻辑程式 光彩照人的女王 X光照片下的骨架! 什么是文化? 一个群体, 从事某项活动时,共同持有的信念,大家遵守的行动规则,以及公共默认的约定等的总和。 例如汉文化: 使用方块字,语言雷同; 儒家经典作为共同信念; 社会、家族、家庭的制度; 长期积累的文学艺术、科学技术等意识形态 宗教、节日、民俗…… 文化的界定 文化的经典定义:“所谓文化或文明,就其广泛的民族学意义来说,乃是知识、信仰、艺术、道德、法律、习俗和任何人作为一名社会成员而获得的能力和习惯在内的复杂整体.” ——泰勒《原始文化》 广义的文化和狭义的文化 广义的文化是与自然相对的概念,它是指通过人的活动对自然状态的变革而创造的成果,即一切非自然的、由人类所创造的事物或对象. 狭义的文化则是指社会意识形态或观念形式,主要是人们的精神生活领域。 文化的若干特征分析 文化的民族性、地域性与多元文化。 不同的地理环境造就了不同的地域文化和民族文化,就当今的中国文化来说大致就有“八大板块”构成,即中原京派
❸ 什么是"数学文化","数学文化"的特点是什么
狭义:数学的思想、精神、方法、观点、语言,以及它们的形成和发展。
广义:除上述内涵以外,还包含数学家,数学史,数学美,数学教育。数学发展中的人文成分、数学与社会的联系、数学与各种文化的关系,等等。
❹ 新的高考要求中的数学文化是什么内容
2016年10月8号,教育部考试中心公布了[2016]第179号文件《关于2017年普通高考考试大纲修订内容的通知》,对数学增加了数学文化的要求。
这一文件的公布,是从考试命题的角度第一次非常正式地明确要求要把数学文化渗透入数学试题,那么未来高考数学命题肯定会遵照执行,定会有所体现。但数学文化我们虽然提了很久,但如何在数学试题中体现出来,对广大一线教师而言,也是比较陌生的。因为数学文化本来是个笼统的概念,传统意义上“文化”在文科中出现的较为普遍,在文科试题的命制中是很容易做到的,而数学是逻辑科学,是思维的科学,如何把“文化”渗透其中,实在是摆在广大数学教育工作者面前的一个新的课题。
从今日起,笔者将陆续写出一些与数学文化相关的文章,从一线教师的角度谈谈自己的理解,期望抛砖引玉,激发老师们积极投入到对这个问题的讨论中来。
什么是数学文化?
什么是数学文化?学过几个数字,买菜卖菜会算个帐,在民间就会理解为有些文化了,是数学方面的,当然也会理解成有些数学文化了。这种对数学文化的理解,可能是最狭义的。
有些人,包括一些教了一辈子数学的老师,对自己教的内容都不信,认为学生毕业后用不上所学的数学知识。那按照这种观点的话,可以推知学生学了十几年的数学,最后都是一批没有数学文化的人!说的再难听点,凡是不从事数学工作的都可以称得上数盲了。难道数学知识是数学文化的全部吗?难道教的勾股定理、二项式定理等等这些具体的内容是数学文化,一旦忘掉,在学生身上就什么都不剩了吗?就没有数学文化了吗?应该说,把数学文化等同于数学知识也是一叶障目。
那到底什么是数学文化呢?谈论任何事物,都要首先搞清它的定义是什么。要理解数学文化,我们先从字面把它拆解开来,从字面上来讲,“数学文化“应该是”“数学的文化”,所以数学文化首先是文化,其次才是数学的,有数学特征的。因此要理解数学文化,就要先搞清楚什么是文化。
文化一词最早出现在《周易》里,里面说“观其天文,以察时变;观其人文,以化天成”,这里“文”字指“纹路,色彩”,引申为事物的“道理(结构,秩序等)”,“化”就是“变,改变”,“使……变成……”,这样“人文化成”可以解释为:用人文的道理来造就人的世界,也就是说“文化”指的的是用人的标准和尺度去改变对象的行为过程及其结果。
由古人对文化的认识我们可以推得数学文化的定义:用数学的标准和尺度去改变人的行为过程及其结果。从这个定义中我们可以看出,数学文化不能单纯理解为一个名词,比较恰当地应该理解为一个动词,它重在“对人的数学教化”,包含两项主要内容:一是“人(事物)数学化”,也就是让人(事物)具备数学的属性,也就是用数学的语言去描述世界。二是“数学化人(事物)”,也就是用数学的知识去改造人(事物)。可能这种描述有些抽象,我们举个例子来说明:
十个苹果放在盘子里,又加入五个苹果。这个生活现象可以抽象成“10+5=15”,这个抽象的过程就是使得这个事情数学化,也就是“人(事物)数学化的过程”。
如果某人学会了这种数学抽象,学会了这个数学的本领,那么再遇到十只羊在羊圈里,又跑进了五只羊,那么他能马上就能计算出是15只羊。试想,如果不具备这种数学的本领,那么他只能大眼瞪小眼,晕晕乎乎了。这个过程就是“数学化人(事物)”。
“数学文化”既然是一个过程,因此如果在高考命题中要渗透“数学文化”的话,它的立意应该就在“数学化人”与“人数学化”两个方面,只要能够体现出这两个方面中的任何一个方面,就可以看成是体现了数学文化。
例如:已知车跑的路程越远,消耗的油越多,请你用数学语言来描述这种现象:_______________________
这个题目就考察学生“事物数学化”的,就能从答案中看成学生是否有数学文化,这个题目就是渗透了数学文化。
再如:你现在已经学习了直角坐标系,已经对直角坐标中点的坐标非常清晰了,那么请你给出斜坐标系下点的坐标定义:______________________________________________.
这个题目需要学生去类比直角坐标系得出斜坐标系,这个过程就是考察学生能否用数学的本领去解决未知的领域,就是对“数学化人”的考察。这个题目也可以看作是渗透了数学文化的。
值得注意的是,我们提倡把数学文化渗透到试题当中,但也不能片面地认为就是简单地把一个古文数学材料中的一段话搬过来,整合到题目中就是体现数学文化了。前几年全国卷有一个题目,就是把九章算术的一段古文拿过来,然后再用白话文解释一番,事实上解题中没有几个学生去看那段古文,大部分都是直接看白话译文,看完白话译文就能马上做题。试问“这段古文除了给人感觉很酷外,还有多大的用处呢?”。当然,这种方式可以理解成是把传统中华文化渗透其中,培养学生的爱国主义热情,但笔者认为这种方式是一种拼盘式行为,它渗透的是中华传统文化,考察的是日常教学中把中华传统文化与数学教学结合的情况,但数学文化(以数化人与人数学化)的渗透不够。提倡对数学文化的考察,需要编制出能考察“过程”的题目,这需要命题专家潜心琢磨。
理解数学文化,就要从“过程”的角度去理解,无论是命题者,教材编写者,还是我们一线数学教师,都是下一步需要重视的。尤其是新课标修订者和新教材编写者,更要重视。以马上要面世的新教材为例,如果所选题目还是以前风格,所选例习题不能体现数学文化的过程性特点的话,那么其成功性与否就值得怀疑。那局面将是“高考命题者说一套、教材编写者自成一套、课标又一套”,这三套将会让一线教师无所适从。让我们拭目以待,期待给我们眼前一亮的感觉。
❺ 数学文化包括哪些方面
什么是数学?曾经有一种非常普遍的说法,即“数学是锻炼思维的体操”,学数学就是为了培养逻辑思维能力.对于数学,绝大多数人的印象是严格、抽象,或者还有单调、枯燥,就象数学家G·波利亚所担忧的:“数学在各门课程中是最不得人心的一门功课,其名声不佳……”.那么,数学真的不过是一种“思维体操”,仅此而已?随着新世纪的到来,随着人们对数学更深层次的认识,数学的文化现象已明显的凸现了出来.“数学是一种文化”,已成为定论,而作为文化是可以被继承和发展的.细细想来,事实确是如此,世界上的语言、文字、宗教、党派都有地域之分,但世上只有一种数学,数学定理又能万世流传,数学确实是最具有文化特征的了.
数学确实是一种文化.
王梓坤先生在《今日数学与应用》一文中总结了数学在四个方面的巨大作用,其中一条就是“对全体人民的科学思维与文化素质的哺育”.他进一步指出:“数学文化具有比数学知识体系更为丰富和深邃的文化内涵,数学文化是对数学知识、技能、能力和素质等概念的高度概括.”我们学习数学不仅是为了获取知识,更能通过数学学习接受数学精神、数学思想和数学方法的熏陶,提高思维能力,锻炼思维品质.前苏联数学家辛钦也指出:数学教育不仅可以培养人正直与诚实的品质,也能锻炼人顽强的意志与勇气.难怪英国的法律大学,抑或美国西点军校,都开设了许多高深的数学课程,其目的不言而喻.
日本数学教育家米山国藏在从事了多年数学教育之后,说过一段意味深长的话:学生们在初中或高中所学到的数学知识,在进入了社会之后,如果没有什么机会应用,那么这种作为知识的数学,通常在出校门后不到一两年就会忘掉,然而他们不管从事什么工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期的在他们的工作和生活中发挥着重要作用,这无疑是对数学文化内涵的一个精彩注释.
由此可见,数学的文化性体现在:它可以帮助我们更好的认识自然,了解世界,适应生活;它可以促进我们有条理的思考,有效的表达与交流,运用数学去分析问题和解决问题;它可以发展我们的主动性、责任感和自信心,培养我们实事求是的科学态度和勇于探索的创新精神.可以这么说,良好的数学修养是人的一生的可持续发展的基础.在未来社会里,没有相当的数学知识,就是没有文化,就是“文盲”.
数学是一种文化,那么,数学究竟是精英文化还是大众文化?看看伟大的数学家庞加莱是怎么说的,庞加莱说:
科学家研究自然并不是因为它有用,他研究它是因为他喜爱它,他喜爱它是因为它美.如果它不美,它就不值得被人知道,而如果自然不值得知道,人也就不值得活下去.当然,我这里说的并不是那种激动感官的美———那种品质上和外观上的美;并不是我低估那种美,远远不是如此,但那种美跟科学不相干;我说的是各部分之间和谐有序的更深刻的美,是一个纯洁的心灵所能掌握的美.
显然,庞加莱指的“科学”主要是理论科学,包括数学.他似乎也支持科学(包括数学)是一种精英文化.
今天看来,庞加莱的观点似乎叫人难以接受.我们认为,数学过分地远离公众,并不是一件好事;数学所具有的客观性,是任何智慧生命所不可避免的“命运”;一个数学问题或理论,如果只有一个人或少数几个人研究过,无法继承下去,最终只能成为后人从陈年故纸堆中翻出来的思维调料,这样的数学就算不上是好的数学.数学作为一种文化要被继承和发展,并不是几个数学家的事,而是大众的事,这注定了数学是一种大众文化.
当我们打开现行数学新教材时,无论是初中教材还是高中教材,数学的“文化味”扑面而来,那一幅幅充满“人性化”的插图,那一篇篇“通俗化”的阅读材料,无不透射出当代数学教育的“人性化”、“通俗化”、“大众化”的教育理念.的确,以弘扬“数学文化”为核心的数学教育才是科学的数学教育,才是完整的数学教育.然而,由于长期受应试教育的影响,我们的数学教育依然存在着某些误区:数学课程过分强调它的“逻辑性”、“演绎性”、“封闭性”;课堂教学中,解题教学占据了主导地位.通过大量练习来学习数学,是当今我国数学教学的主旋律.通过大量模仿性练习,这对提高学生基本运算能力、逻辑推演能力和解题能力的确有效,但培养这样的学生除了暂时能解几道题,还能干什么呢?他们无法体会到数学的文化价值,更缺乏创新精神,这不能不说是数学教育的一个严重的缺陷.要彻底改变这种现状,教材的改革固然重要,但归根到底还是取决于选拔人才机制的变革,取决于教育理念的更新,而教师有着责无旁贷的责任.
❻ 数学文化知识的内容有哪些
数学文化知识的内容有如下:
1、数学发展史与人类发展史表明,数学一直是人类文明中主要的文化力量,它与人类文化休戚相关,在不同时代、不同文化中,这种力量的大小有所不同。
2、数学文化是传播人类思想的一种基本形式;数学文化包含着人类所创造语言的特殊形式;数学文化是自然与人类社会相互联系的一种工具;数学文化具有相对的稳定性和连续性;数学文化具有高度的渗透性。
3、数学语言是精确的,是从不含糊的,是有条理的,严谨,简洁,规范。
4、数学史上的三次危机,都是与悖论有关的,它们对数学及哲学都造成了巨大的影响。但数学危机不仅没有击垮数学,反而促使了数学的发展,具有丰富的思想文化意义,促使人们对数学认识的不断深化。
5、数学还从思维和技术等多角度为人类文化提供了方法论基础和技术手段,从而丰富和推动了文化的发展,数学是信息时代科学文化发展的基础。
❼ 数学文化是什么意思
狭义:数学的思想、精神、方法、观点、语言,以及它们的形成和发展。
广义:除上述内涵以外,还包含数学家,数学史,数学美,数学教育。数学发展中的人文成分、数学与社会的联系、数学与各种文化的关系,等等。
❽ 数学文化有哪些
1.数学的理性精神
这种理性精神的养成与发展有着特别重要的意义,它是人类文明、特别是西方文明的核心所在.自第一次数学危机之后,以柏拉图为代表的哲学家(古代哲学与数学不分家)就开始意识到人类的直观的不可靠,数学的理性精神就开始发展.因此,在教学中,应该培养学生的独立思考、勇于批判的精神.并以此为重点,一以贯之通过数学教学来培养人类的理性精神,而这应该是数学教育的最高境界.
2.数学思想与方法
数学是人类抽象思维的产物,是一种理性化的思维范式和认识模式,它不仅仅是一些运算的规则和变换的技巧,它的实质内容是能够让人们终身受益的是思想方法.因此,在教学实践中应该始终关注数学的这个本质特征,避免单纯追求数学学习的知识化倾向,注重能力、思维的培养,让学生终身受益.
小学阶段的数学思想主要有:公理化、符号、集合、模型、化归、恒等与不等、数形结合、函数与对应、无限等重要的数学思想.数学方法:比较、分析、综合、抽象、概括、归纳、演绎、类化、转化与变形、对应、假设、猜想、观察、化简、推理和证明等重要的数学方法.
3.数学的美
数学是美,是一种具有新的美学维度的精神空间.正如英国着名哲学家罗素说:“数学,不但拥有真理,而且有至高的美.”数学的美不象自然美、艺术美那么鲜明、亮丽而潇洒,甚至也不象其它社会美那么地直观和具体,它抽象、严谨、深沉、冷峻而含蓄,是一种理智的美.因此,在教学实践中,我们应该努力发掘数学的特有的理智美,引导学生去欣赏、体会数学的美.小学阶段数学的美学价值主要包括:动态美、静态美、对称美、不对称美、直观美、抽象美…….
4.数学的应用价值
数学的文化意义还不仅在于知识本身和它的内涵,还在于它的应用价值.因此,在教学中应该加强数学与实际生活的联系,增强数学的应用性,让学生体验到数学的应用价值.
5.数学的历史文化
数学文化的内涵不仅表现在知识本身,还寓于它的历史,它是一种历史存在.因此,在教学过程中,充分揭示数学知识产生、发展的全过程.我们认为数学既是创造的,也是发明的,大到一门学科,小到一个符号,总是在一定的文化背景下出于某一种思考而产生的.我们的数学教育应当努力还原、再现这一发现或发明的过程,探寻数学知识的源泉,重建被割裂的数学知识与现实背景的联系.
❾ 什么是数学文化的精神产品和物质产品
数学文化是指人类在数学行为活动的过程中所创造的物质产品和精神产品。物质产品指数学命题、数学方法、数学问题和数学语言等知识性成分;而精神产品是指数学思想、数学意识、数学精神和数学美学等观念性成分。观念性成分是一种“默会知识”,主要具有“文化素质教育”的功能;知识性成分是一种“显性知识”,主要具有“科学技术交育”的功能。