1. 为什么污水可生化降解性的指标BOD5/COD,在 0.35 以上就不必水解酸化
B/C在0.35以上未必不用水解酸化。
楼主提出这样的疑问是因为一般而言生活污水的B/C比在0.35左右,可生化性较强,不需要水解酸化,直接生物降解即可,但是要考虑到实际水样中,大分子物质对水质COD的贡献率来参照,比如苯等大分子链物质,不经过水解酸化,微生物是无法吸收的,如果占一定比例,超过处理目标COD值则无法达标。比如原水COD2000,B/C比0.4,苯环给COD的贡献是100,没有水解酸化,微生物即使全部处理掉其他物质,如果按60的排放标准,还是没有办法完成的。不过也有种可能,就是可以通过铁碳床、芬顿等工艺取代水解酸化过程。
2. 污水不可生化,难生化,可生化的BOD/COD的范围是多少
传统理论认为
BOD/COD>0.3的污水 视为可生化
0.2-0.3之间为难生化
<0.2为不可生化
BOD/COD比值越高越,可生化性越好
这些只是理论上,碰上一些较特殊的水,还要综合考虑其他因素
3. BOD和COD的区别是什么,正常生活污水处理中,要求B/C一般为多少
BOD五日生化需氧量,COD氧化水中全部有机物需要的氧,B/C大于0.3为可生化污水,一般生活污水B/C大约是0.4-0.5
4. 废水的可生化性指标是如何规定的
一般考虑废水的B/C,如果在0.3以上,可认为可生物处理,如果低于0.2,基本可不用考虑生化处理,在0.2~0.3之间尝试如何提高B/C——水解酸化,高级氧化等。
(4)生活污水可生化比一般为多少扩展阅读:
模拟实验法是指直接通过模拟实际废水处理过程来判断废水生物处理可行性的方法。根据模拟过程与实际过程的近似程度,可以大致分为培养液测定法和模拟生化反应器法。
1、培养液测定法
培养液测定法又称摇床试验法,具体操作方法是:在一系列三角瓶内装入某种污染物(或废水)为碳源的培养液,加入适当N、P等营养物质,调节pH值,然后向瓶内接种一种或多种微生物(或经驯化的活性污泥)。
将三角瓶置于摇床上进行振荡,模拟实际好氧处理过程,在一定阶段内连续监测三角瓶内培养液物理外观(浓度、颜色、嗅味等)上的变化,微生物(菌种、生物量及生物相等)的变化以及培养液各项指标:pH、COD或某污染物浓度的变化。
2、模拟生化反应器法
模拟生化反应器法是在模型生化反应器(如曝气池模型)中进行的,通过在生化模型中模拟实际污水处理设施(如曝气池)的反应条件,如:MLSS浓度、温度、DO、F/M比等,来预测各种废水在污水处理设施中的去除效果,及其各种因素对生物处理的影响。
由于模拟实验法采用的微生物、废水与实际过程相同,而且生化反应条件也接近实际值,从水处理研究的角度来讲,相当于实际处理工艺的小试研究,各种实际出现的影响因素都可以在实验过程中体现,避免了其他判定方法在实验过程中出现的误差,且由于实验条件和反应空间更接近于实际情况,因此模拟实验法与培养液测定法相比,能够更准确地说明废水生物处理的可行性。
但正是由于该种判定方法针对性过强,各种废水间的测定结果没有可比性,因此不容易形成一套系统的理论,而且小试过程的判定结果在实际放大过程中也可能造成一定的误差。
5. 废水的生化处理中营养比碳氮磷之比为100:5:1.
1 首先必须明确,生化处理中的营养比是根据污泥/生物膜中微生物需求来确定的。自然界中,各类微生物需求的碳氮比是不同的,但是对于活性污泥这个微生物群体而言有一个经验的值,好氧条件下是100:5:1,厌氧条件下是200:5:1.
2 其次,各参数的含义。碳氮磷都要以可生物吸收的量计算,因此,碳以BOD5表示;N一般指总凯氏氮(TKN),包括有机氮和氨氮,但不包括亚硝氮和硝态氮,因为除了反硝化细菌以外,大部分微生物都不能直接以亚硝氮和硝态氮作为氮源,而有机氮和氨氮则可被绝大多数微生物用做氮源;磷一般为磷酸盐。
3 最后我来解释一下这个比例的来源:
说法一:Mc Carty于1970年将细菌原生质分子式定为C5H7O2N,若包括磷为C60H87N12O23P,其中C、N、P所占的百分数分别为52.4%、12.2%、2.3%。对于好氧生物处理过程来说,在被降解的BOD5中,约有20%的物质被用于细胞物质的合成,80%被用来进行能量代谢所以进水中BOD:N:P=(52.4%/20%):12.2%;2.3%=100:5:1。
说法二:细菌C:N=4-5,真菌C:N=10,活性污泥系统中的C:N=8(介于二者之间),同时由于只有40%的碳源进入到细胞中,所以这个比例就是20,即100:5.磷的比例参照一。
4还想提点个人看法:活性污泥系统是个微生物生态系统,不仅是细菌,还存在大量真菌和其他微生物。这个比例我想不完全是细菌的组成,而是整个活性污泥微生物系统的营养需求平均值,因此我给出了说法二,个人也觉得说法二更符合具说服力。同时,对于活性污泥系统而言,这个比例在工程中也未必是一定的,生物总是有一定的适应范围的,因此,理论如此,实际操作接近即可。
6. 污水的可生化性怎么判断
污水的生物降解性能。对污水处理方案的选定十分重要。普遍采用BOD5/COD指标来衡量,也有采用BOD5/TOC指标的。
BOD5/COD指标是5日生化需氧量与化学需氧量的比值,是污水可生化降解性的指标。公式表示为BOD5/COD=(1-α)×(K/V)式中:α为生化难以降解部分CODNB与COD之比;K为BOD5与最终生化需氧量BODU之比,为常数。
从式中可以看出BOD5/COD值随α增大而减小,故这一比值可反映污水可生化降解性的功能。通常以BOD5/COD=0.3为污水可生化降解的下限。
(6)生活污水可生化比一般为多少扩展阅读
原理:将水样注满培养瓶,塞好后应不透气,将瓶置于恒温条件下培养5天。培养前后分别测定溶解氧浓度,由两者的差值可算出每升水消耗掉氧的质量,即BOD5值。
由于多数水样中含有较多的需氧物质,其需氧量往往超过水中可利用的溶解氧(DO)量,因此在培养前需对水样进行稀释,使培养后剩余的溶解氧(DO)符合规定。
一般水质检验所测BOD5只包括含碳物质的耗氧量和无机还原性物质的耗氧量。有时需要分别测定含碳物质耗氧量和硝化作用的耗氧量。常用的区别含碳和氮的硝化耗氧的方法是向培养瓶中投加硝化抑制剂,加入适量硝化抑制剂后,所测出的耗氧量既为含碳物质的耗氧量。
在5天培养时间内,硝化作用的耗氧量取决于是否存在足够数量的能进行此种氧化作用的微生物,原污水或初级处理的出水中这种微生物的数量不足,不能氧化显着量的还原性氮。
而许多二级生化处理的出水和受污染较久的水体中,往往含有大量硝化微生物,因此测定这种水样时应抑制其硝化反应。在测定BOD5的同时,需要葡萄糖和谷氨酸标准溶液完成验证试验。
7. 生活污水的各项指标一般多少
常用污水指标一般有以下九种:
1、BOD5:污水平均浓度/(mg/L)200mg/L
生物化学需氧量表示在20℃下,5d微生物氧化分解有机物所消耗水中溶解氧量。第一阶段为碳化(C-BOD),第二阶段为消化(N-BOD)。
BOD的意义:a、生物能氧化分解的有机物量;b、反映污水和水体的污染程度;c、判定处理厂效果;d、用于处理厂设计;e、污水处理管理指标;f、排放标准指标;g、水体水质标准指标。
2、CODMn/CODCr:污水平均浓度/(mg/L)100mg/L500mg/L
化学需氧量表示氧化剂有KMnO4和K2Cr2O7。COD测定简便快速,不受水质限制,可以测定含有生物有毒的工业废水,是BOD的代替指标,也可以看作还原物的量。
CODCr可近似看作总有机物量,CODCr-BOD差值表示污水中难被微生物分解的有机物,用BOD/CODCr比值表示污水的可生化性,当BOD/CODCr≥0.3时,认为污水的可生化性较好;当BOD/CODCr<0.3时,认为污水的可生化性较差,不宜采用生物处理法。
3、SS :污水平均浓度/(mg/L)200mg/L
悬浮物质简写,水中悬浮物测定用2mm的筛通过,并且用孔径为1μm的玻璃纤维滤纸截留的物质为SS。交替物质在滤液(溶解性物质)和截留悬浮物中均含有,但大多数认为胶体物质和悬浮物质一样被滤纸截留。
4、TS:污水平均浓度/(mg/L)700mg/L
蒸发残留物简写,水样经蒸发烘干后的残留量。溶解性物质量等于蒸发残留物减去悬浮物质量。
5、灼烧碱量(VTS)(VSS):污水平均浓度/(mg/L)450mg/L150mg/L
蒸发残留物或悬浮物质在600℃±25℃经30min高温挥发的物质,表示有机物量,蒸发残留物灼烧减量的差称为灼烧残渣,表示无机物部分。
6、总氮有机氮氨氮亚硝酸盐氮硝酸盐氮:污水平均浓度/(mg/L)35mg/L15mg/L20mg/L0mg/L
氮在自然界以各种形态进行着循环转换。有机氮如蛋白质水解为氨基酸,在微生物作用下分解为氨氮,氨氮在硝化细菌作用下转化为亚硝酸盐氮(NO2—)和硝酸盐氮(NO3—);另外,NO2—和NO3—在厌氧条件下在脱氮菌作用下转化为N2。
氮是细菌繁殖不可缺少的物质元素,当工业废水中氮量不足时,采用生物处理时需要人为补充氮;相反,氮也是引发水体富营养化污染的元素之一。
7、总磷有机磷无机磷:污水平均浓度/(mg/L)10mg/L3mg/L7mg/L
在粪便、洗涤剂、肥料中含有较多的磷,污水中存在磷酸盐和聚磷酸盐和聚磷酸等无机磷盐和磷脂等有机磷酸化合物磷同氮一样,也是污水生物处理所必需的元素,磷同时也是引发封闭性水体富营养化污染的元素之一。
8、PH值:污水平均值6.5~7.5
生活污水PH值在7左右,强酸或强碱性的工业废水排入PH值变化;异常的PH值或PH值变化很大,会影响生物处理影响。另外,采用物理化学处理时,PH值是重要的操作条件
9.碱度(CaCO3):污水平均浓度/(mg/L)100mg/L
碱度表示污水中和酸的能力,通常是以CaCO3含量表示。污水中多为Ca(HCO3)2和Mg(HCO3)2碱度,碱度较高缓冲能力强,可满足污水硝化反应碱度的消耗。在污泥消化中有缓冲超负荷运行引起的酸化作用,有利消化过程稳定。
除了以上的指标外还有活性污泥的指标,例如:污泥沉降比、污泥体积指数、污泥负荷、容积负荷、有机负荷、泥龄等来判断污泥的活性存活情况。
(7)生活污水可生化比一般为多少扩展阅读
水污染物排放标准通常被称为污水排放标准,它是根据受纳水体的水质要求,结合环境特点和社会、经济、技术条件,对排入环境的废水中的水污染物和产生的有害因子所作的控制标准。它是判定排污活动是否违法的依据。污水排放标准可以分为:国家排放标准、地方排放标准和行业标准。
1、国家排放标准国家排放标准是国家环境保护行政主管部门制定并在全国范围内或特定区域内适用的标准,如《中华人民共和国污水综合排放标准》(GB8978-1996)适用于全国范围。
2、地方排放标准地方排放标准是由省、自治区、直辖市人民政府批准颁布的,在特定行政区适用。如《上海市污水综合排放标准》(DB31/199-1997),适用于上海市范围。
3、行业标准目前我国允许造纸工业、船舶工业、海洋石油开发工业、纺织染整工业、肉类加工工业、钢铁工业、合成氨工业、航天推进剂、兵器工业、磷肥工业、烧碱、聚氯乙烯工业等12个工业门类,不执行国家污水综合排放标准,可执行相应的行业标准。
8. 生活污水的可生化性多少
0.4
9. 生活污水中BOD和COD的比值一般在什么范围
BOD/COD应在在0.5左右、或者更高点。
化学需氧量COD是以化学方法测量水样中需要被氧化的还原性物质的量。废水、废水处理厂出水和受污染的水中,能被强氧化剂氧化的物质(一般为有机物)的氧当量。
BOD为生化需氧量或生化耗氧量(一般指五日生化需氧量),表示水中有机物等需氧污染物质含量的一个综合指标。说明水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量。
(9)生活污水可生化比一般为多少扩展阅读:
COD对生活的影响:
化学需氧量高意味着水中含有大量还原性物质,其中主要是有机污染物。化学需氧量越高,就表示江水的有机物污染越严重,这些有机物污染的来源可能是农药、化工厂、有机肥料等。
如果不进行处理,许多有机污染物可在江底被底泥吸附而沉积下来,在今后若干年内对水生生物造成持久的毒害作用。在水生生物大量死亡后,河中的生态系统即被摧毁。
人若以水中的生物为食,则会大量吸收这些生物体内的毒素,积累在体内,这些毒物常有致癌、致畸形、致突变的作用,对人极其危险。另外,若以受污染的江水进行灌溉,则植物、农作物也会受到影响,容易生长不良,而且人也不能取食这些作物。
但化学需氧量高不一定就意味着有前述危害,具体判断要做详细分析,如分析有机物的种类,到底对水质和生态有何影响。是否对人体有害等。
如果不能进行详细分析,也可间隔几天对水样再做化学需氧量测定,如果对比前值下降很多,说明水中含有的还原性物质主要是易降解的有机物,对人体和生物危害相对较轻。
10. 请问污水处理中各池体中经验或理论气水比是多少
这个还真不好确定,看你曝气的目的:是为了搅拌一般气水比5:1可以满足,像PH调节池等,要是为了氧化这个要看水中污染物成分,不易生化的比例大点,易于生化的比例小点,生活污水我们一般选气水比10:1