‘壹’ 生活中的乘法除法的数学小报怎么做
画一艘鼓起风帆的大船,在海洋里乘风破浪的航行。我就是开船的小朋友,大海就是知识的海洋,我要在知识的海洋里学习无穷无尽的知识,不怕风浪有多汹涌。
第一部分:我眼中的除法
除法就是把东西平均分成几份,每份是多少。除号的两个点代表东西,横线表示把东西平均分开。你看,谁都不想分离,那两个点有些伤心呢。
第二部分:分苹果,这是一道有余数的数学题。
49个苹果平均分给9个小朋友,每人分(5)个,还剩(4)个。
第三部分:锯木头,是一道有除法又有乘法的数学题。
一根木头长24米,要锯成4米长的木棍,能锯(6)根。每锯一次要用3分钟,全部锯完要用(15)分钟。
‘贰’ 小数乘除法的思维导图怎么画
思维导图的绘制,一般按照以下7个步骤来:
1.从一张白纸(一般是A4纸)的中心开始绘制,周围留出空白。
2.用一幅图像或图画表达你的中心思想。
3.在绘制过程中使用颜色。
4.将中心图像和主要分支连接起来,然后把主要分支和二级分支连接起来,再把三级分支和二级分支连接起来,依次类推。
5.让思维导图的分支自然弯曲而不是像一条直线。
6.在每条线上使用一个关键词。
7.至始至终使用图像。
思维导图,又称脑图、心智地图、脑力激荡图、思维导图、灵感触发图、概念地图、树状图、树枝图或思维地图,是一种图像式思维的工具以及一种利用图像式思考辅助工具来表达思维的工具。思维导图是使用一个中央关键词或想法引起形象化的构造和分类的想法;
它用一个中央关键词或想法以辐射线形连接所有的代表字词、想法、任务或其它关联项目的图解方式。
‘叁’ 国外没有九九乘法表,那他们是怎么做乘除法的
在我们中国,几乎从幼儿园刚接触数学就开始了背九九乘法表这一苦逼而又漫长的过程,记得小时候很多人为了背会九九乘法口诀,被老师批,被家长训。但是到最后都背的滚瓜烂熟,而且用起来得心应手。但是不得不说,九九乘法表确实非常好用,它为每一位中国学生学习数学都奠定了一定的基础。所以,中国的数学一直都是很牛逼的,从古至今一直称霸于全世界。
众所周知,外国是没有九九乘法表的,那他们是怎样算乘法的呢?其实,外国人也有自己的算法,那就是采用画线的方法计算乘法。
例如12×11,先画一条竖线,代表10,再画两条竖线,代表2,“12”就是这样表示:
再想象一下999×999,画面太美……草稿纸起码准备10米吧?
哈哈,这样数点点会数到瞎眼吧……
可见一旦数字变大了,那么计算量也就够呛了,估计数点点会累瘫吧!
小伙伴们,这个时候发现九九乘法表的厉害了吧?然而,我们有几个人知道九九表的是怎么来的吗?
春秋战国时期,不但发明了十进位制,还发明了九九表。后来东传入高丽、日本,经过丝绸之路西传印度、波斯,继而流行全世界。甚至有人把久久乘法表视为比中国四大发明还要重要的一大神器。可见它的地位是多么的显赫。
2015年3月,九九乘法表传入英国后,因语言不同导致口诀变长,背诵起来很有难度,所以“一课一练”英国版很有可能改为12×12乘法表。
不得不膜拜我们国家的九九乘法表,实在是太强大了。如果我们跟外国人同时做十道计算题的话,估计我们都做完了他们才算完一道。知道外国人用“线条”计算乘法,真心佩服我们中国人的智慧!
‘肆’ 乘除法的意义和各部分间的关系的线段图怎么画
《乘、除法的定义及各部分间的关系》教学设计 一、教学目标 (一)知识与技能 结合具体情境通过对算式变换的比较,理解和掌握乘、除法的意义和各部分之间的关系。 (二)过程与方法 在探索乘、除法各部分之间的关系的过程中,发展抽象、概况的能力,进一步感悟运算本质。 (三)情感态度和价值观 在用抽象文字表示乘、除法各部分间的关系的过程中,感受数学的内在逻辑性,体会数学的价值。 二、教学重难点 教学重点:理解和掌握加减法各部分之间的关系。 教学难点:表示加、减法各部分间的关系。 三、教学准备 课件、学习单。 四、教学过程 (一)创设情境,提出问题。 1.师:同学们,看到屏幕里的图片,有什么感觉?(出示各种美丽的花朵) 预设: 生:非常漂亮,感觉很香…… 2.师:是的,花不但是植物繁殖的重要部分,而且还有着很多美好的寓意。荷花代表着纯洁,牡丹则代表着高贵。今天这节课我们要用数学的眼光来欣赏花,看看大家能发现什么数学信息。 (出示主题图) 3.师:你能根据图中的信息提出什么数学问题吗? 预设: 生:每个花瓶里插3枝花,4个花瓶一共插多少枝花? 【设计意图】学生学习的过程应该是开放的、是富有美感和艺术感的。在课的开始,通过对花的欣赏引导学生自主提出数学问题,在激发学生研究兴趣的同时,引出研究问题。 (二)自主探究,乘、除法定义。 1.师:同学们提出的问题能够解决吗?请每个同学自己动手试一试。 2.学生独立解题 3.汇报交流,展示解题过程: 预设: 生1:3+3+3+3=12 生2:3×4=12 4.师:大家都是怎么想的? 预设: 生1:每个花瓶中有3枝花,四个花瓶一共就是4个3相加。 生2:4个3,也可以用乘法表示,就是3×4。 5.师:看来4个3相加也可以表示为3×4。你认为哪种表示方式更简便呢?为什么? 预设:乘法,因为加数个数多时可以用一个数表示个数。 6.你还能提出什么用乘法计算的问题吗? (学生提出数学问题) 7.师:用你自己的话说一说什么是乘法? 预设: 生:求几个相同加数和的简便运算叫乘法。 (板书:乘法定义) 8.师:你知道乘法算式中这些数都叫什么名字吗? 介绍乘法算式各部分名称(因数×因数=积) 9.师:在上节课我们学习加、减法时发现一个加法算式可以改写出两个减法算式。今天你能结合情景和这个乘法算式也改写出用其他运算方法计算的问题吗?小组讨论一下。 9.学生讨论并列式。 (2)12÷3=4 (3)12÷4=3 10.师:谁来说一说,你是怎样想的?这两个除法算式代表什么含义? 预设: 生1:有12枝花,每3枝插一瓶,可以插几瓶? 12÷3=4 生2:有12枝花,平均插到4个花瓶里,每个花瓶插几枝? 12÷4=3 11.师:为什么用除法计算呢? 预设: 生:因为知道了两个因数的积,求另一个因数。 12.师:你能提出一个用除法解决的实际问题吗? 13.师:想一想什么是加法,什么是减法?然后,请你试着用自己的话说一说什么是除法? 预设: 生:已知两个因数的积与其中一个因数,求另一个因数的运算叫除法。 (板书:除法定义) 14.师:你知道除法算式中这些数又叫什么名字吗? 介绍除法算式各部分名称(被除数÷除数=商) 【设计意图】小学阶段的数学学习应当是一个生动活泼的、主动的和富有个性的过程。通过学生对自主提出问题的解决,逐步体会运算的本质含义,并抽象总结为概括性的语言,在此过程中逐步完善学生的认知,培养学生的抽象概括能力。 (三)小组交流,明确关系 1.师:观察黑板上的算式,再想一想我们是如何研究加、减法的,你有什么发现? 2.师:我们能根据一个加法算式很快地写出两个减法算式,又能根据一个乘法算式很快写出两个除法算式,现在你有什么想研究的? 预设: 生:乘、除法各部分到底有怎样的关系? 3.师:同学们非常善于思考,看来我们这节课除了要知道什么是乘、除法,也需要研究它们之间的关系。下面我们就来研究一下。(板书课题:乘、除法各部分之间的关系) 4.师:根据黑板上的三个算式和上节课的学习经验(课件出示加、减法各部分关系),你能发现乘、除法各部分之间有怎样的关系吗? 5.小组讨论并组内交流 6.整理总结: (1)乘法各部分间的关系: 积=因数×因数 因数=积÷另一个因数 (2)除法各部分间的关系: 商=被除数÷除数 除数=被除数÷商 被除数=商×除数 7.师:请同学们结合刚才的算式,验证大家总结的发现。 8.师:请观察我们总结的结论,看看你又有什么新的发现?小组交流一下。 预设: 生1:乘法是除法的相反运算、 除法是乘法的相反运算。 生2:除法是乘法的逆运算。 9.学以致用:数学书P6做一做 根据36×14=504,不计算直接写出后面算式的结果。 504÷14=( ),504÷36=( ) 10.抽象概括,总结升华。 我们通过这三个算式的联系,初步了解了乘、除法各部分之间的关系,而且验证了乘、除法之间的关系。 (1)乘法各部分间的关系: 积=因数×因数 因数=积÷另一个因数 (2)除法各部分间的关系: 商=被除数÷除数 除数=被除数÷商 被除数=商×除数 希望大家能灵活运用加减法各部分之间的关系来解决问题。 11.师:关于乘、除法的知识研究到这里,你还有什么疑问或还想深入研究的吗? 预设: 生:在有余数的除法里,被除数与商、除数和余数之间有什么关系呢? 12.师:关于这个问题大家是怎么想的呢?具体的内容我们下节课就要研究,请你回家思考一下这个问题。 【设计意图】引导学生对乘、除关系进行整理,进一步引发学生对加乘、除法运算的深层次理解,感受数学严密的逻辑性。并通过与加、减法关系学习的对比掌握研究问题的一般方法,积累数学活动经验。 (四)巩固应用,拓展提高 1.基本练习,巩固新知。 (1)下面各题应用什么方法计算?为什么?(数学书P7 练习二 1) ①蜗牛每小时可爬行5m,6小时能爬行多少米? ②120支铅笔,每12支装一盒,可以装几盒? ③蜗牛6小时爬了30m,平均每小时爬行几米? ④一头大象的体重是5600kg,正好是一头牛的8倍。这头牛重多少千克?
‘伍’ 除法口诀表怎么画才好看
提前规划好尺寸,最好区分颜色。
要想画出好看的除法口诀表必须要将就色彩搭配,如果只是单纯的黑白格就会感觉到很单调。
除法口诀表要注意放大数字的字号,字体颜色不能与背景重叠。
‘陆’ 画图表示4×6-22的意思!图怎么画,求解答
脱式计算4×6-22
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
4×6-22
=24-22
=2
(6)生活中乘除法图片怎么画扩展阅读:将减数与被减数个位对齐,再分别与对应计数单位上的数相减,不够减的需向高位借1,依次计算可以得出结果,减数小于被减数将两数调换相减最后结果加个负号;小数部分相减可参照整数相减步骤;
解题过程:
步骤一:4-2=2
步骤二:2-2=0
根据以上计算步骤组合计算结果为2
存疑请追问,满意请采纳
‘柒’ 数学初中,整式的乘除思维导图怎么画
思维导图如下:
单项式和多项式统称为整式。整式的乘除包括:同底数幂的乘法,幂的乘方,积的乘方,单项式乘以多项式,多项式乘以多项式,同底数幂的除法,单项式除以单项式,多项式除以单项式等运算。各种运算都有相应的法则。
公因式提取规则总结:
① 公因式的系数必须是多项式中各项系数的最大公约数。
②字母必须取多项式中各项都含有的字母。
③字母对应的指数,要取多项式中各项该字母指数最小的那一个。
当公因式多项式时,取多项式指数最低的。
(7)生活中乘除法图片怎么画扩展阅读
例如:
(1)y²×y³×y^4
=y^(2+3+4)
=y^9
(2)(-2a²b)³
=-8a^6b^3.
(3)-1/2xy²×2/3x²y
=(-1/3)x³y³
(4)(-2x)(4xy-y²)
=-8x²y+2xy²
(5)4x²×(x²-1/2x-1)
=4x^4-2x²-4x²
(6)2a(a-4b)-b(a+2b)
=2a²-8ab-ab-2b²
=2a²-9ab-2b².
‘捌’ 关于乘法和除法智慧树怎么画
首先准备工具画出树干和树支,然后按照知识体系填入乘除法知识。
1、在画智慧树前,把工具和材料的准备好,有彩色纸、彩色笔、铅笔、剪刀、橡皮、直尺;
2、用绿色彩色笔在绿色彩纸上画出树叶图形。根据数学教程的目录标题的数量画出树叶图形;
3、取蓝色彩色笔在绿色彩纸上写出数学知识点标题。注意文字要居中写好;
4、用剪刀把绿色彩纸上的树叶图形剪出来;
5、然后,用棕色彩色笔在白纸上画出树干和树枝,并用蓝色水彩笔写出智慧树主题。注意主题文字竖着写;
6、把剪出来的树叶图形摆放在树干和树枝上。注意摆放树叶图形要按照数学知识点的学习的顺序和知识点之间的联系来摆放,并把树叶图形要摆放美观就完成了。
儿童的认知规律是“感知——表象——概念“,使用智慧树教具恰好符合这一规律,能使学生把被动地听变为主动地学,充分调动学生的各种感官参与教学活动。在课堂上恰当地使用教具能使学生在解决问题时恰当地使用合适的工具,能使学生自然想到动手操作去解决问题,培养了学生动手、动脑的能力。
‘玖’ 三位数除以一位数思维导图怎么画
1.注重题材的现实性,体现三位数除以两位数的价值
三位数除以两位数的除法,是数的运算中重要的学习内容,它与其他运算一样,是反映现实世界数量关系的数学模型,也是解决现实生活中问题的工具,但它的这些价值只有通过具体的现实情境才能表现出来,换句话说,学生只有通过从具有现实性的题材中去发现除法问题,分析并解决问题,才能让他们感受到三位数除以两位数的价值。所以,本单元教科书在价值取向上,注重选取现实的、有意义的、富有挑战性的题材,通过具体情境让学生发现情境中的数学问题,通过多样化的学习方式解决问题,让学生感受到三位数除以两位数与现实生活的联系和实用价值。例如,在口算学习时,引导学生解决游乐场及学校新生分班中的数学问题;在笔算学习时,引导学生解决养鸡场中的数学问题。
2.口算、估算与笔算结合,培养学生的数感
能判定不同的算术运算,有能力计算,具有选择适当算法(如口算、估算、笔算、使用计算器计算)实施计算的经验,是数学教学中培养数感的重要内容。在除法运算中,口算、估算与笔算联系十分紧密。具体讲,在笔算的试商时,首先可以把被除数、除数看作整十整百数,并用口算的方法找到初商,体现了口算和估算在笔算中的作用。所以,本单元教科书没有在笔算的试商中把口算、估算结合起来去找初商,这不但体现了3种计算方法的有机结合,互相促进,也有利于发展学生的数感。
3.借助计算器探索规律,培养学生的探索发现能力
乘除法是一种反映现实世界中数量关系的数学模型,在这些关系中,隐含着一些有趣的计算规律。探索简单的数学规律,它可以让学生感受到数学的内在美,培养学生的探索发现能力和归纳概括能力,激发学生学习数学的兴趣。本单元教科书安排探索规律这一内容,主要是让学生借助计算器探索乘、除法算式中的一些简单规律,其中包括商不变的规律。同时,也注重让学生把探索到的规律进行运用,培养学生运用规律解决数学问题的能力。
4.注重实践应用,培养学生解决问题的能力
在本单元中,继续安排了解决问题的内容,体现了解决问题与知识教学紧密结合的编写理念,突出了解决问题的课程价值,不但有利于落实《标准》中提出的培养学生解决问题能力的目标,也有利于进一步加深学生对三位数除以两位数除法的理解和计算方法的巩固。在解决问题的编排上,不但注重内容的现实性,体现三位数除以两位数除法与现实生活的联系,也注重体现数学知识的内在联系,让学生应用已经学习过的做工问题、行程问题的数量关系解决问题。
5.注重知识的整理,促进学生认知结构的完善
人的认识过程是按总体--部分--总体这一顺序进行的。本单元安排的三位数除以两位数的除法,是小学阶段最后一次学习整数除法。因此,在这里安排整理与复习,不但有利于学生对三位数除以两位数知识更好地掌握,也有利于让学生在认知结构中沟通有关知识的联系,形成更加充实、完善的数学认知结构。本单元安排的整理与复习,既有对所学知识的梳理,又有对各种计算方法的系统复习,同时安排了相关的练习来达到巩固、运用的目的。
(三)教学提示
教学本单元的内容时,教师应注意给学生提供三位数除以两位数的实际背景材料,让学生产生问题的需要和计算的需要,体会计算的价值,主动探索计算方法。具体可从以下四方面去考虑:
1.重视原有知识在新知识学习中的迁移
学生的学习,从本质上说是利用已有知识和经验进行主动建构的过程。数学知识具有内在的联系,学生已有的知识基础是推动后继知识学习的重要经验。在本单元学习前,学生已有表内除法,整百数、几百几十的数除以一位数(如200÷4,840÷4)的口算及三位数除以一位数的估算、笔算等认知基础,这些计算方法,在学习三位数除以两位数时都可以借鉴。例如,三位数除以一位数,也有试商的过程,只不过除数是一位数,每次试商时最多只需要看被除数的前两位,根据乘法口诀就能找到准确商,不需要调商,但计算过程中的试商仍然是客观存在的。因此,在教学中应让学生沟通知识的这种内在联系,引导学生主动运用已有知识探索新知识,培养学生迁移、类推能力,获得积极的情感体验。
2.把口算、估算结合,让学生掌握试商方法
教学实践经验告诉我们:计算除数是两位数的除法,最大的障碍是试商的准确,即学生不易找到准确的商而导致计算速度慢和计算的正确率低。克服这一障碍的有效方法是让学生掌握三位数除以两位数笔算的试商方法,减少调商的次数。因此,在教学三位数除以两位数的笔算时,应注意把口算、估算结合起来,突出整百数除以整十数的口算在试商中的基础作用,让学生结合估算和口算去找初商,切实掌握三位数除以两位数的试商规律。例如,计算612÷34时,首先引导学生把612看作600,34看作30,600÷30=20,所以在十位上商2。
3.尊重学生对算法的选择
由于学生的生活情境、已有知识经验和思维方式的不同,他们在计算三位数除以两位数的口算和解决问题时,其思考的方法也不尽相同。在教学中,应尊重学生的选择,允许他们采用自己理解的口算方法进行口算,鼓励学生从不同角度思考,用不同的方法解决问题。如口算200÷40,学生可以想乘法算除法,因为40×5=200,所以200÷40=5,也可以想20里面有5个4,200里有5个40。
4.注意三位数除法与现实生活的联系
前面已讲到,除法是现实问题的数学模型,是解决问题的工具。在本单元教学中,不能单独为掌握计算方法而教学,而应注意三位数除以两位数的现实情景,让学生感受到三位数除以两位数的实用价值,使他们在学习中产生主动探索的心理需要。为此,除了在例题学习时,注意从学生的现实生活出发引出三位数除以两位数的除法计算外,还应注意在练习中为学生运用三位数除以两位数的除法解决问题搭建活动平台,使他们感受到三位数除以两位数的实用价值。
(四)各节教学内容分析和教学建议
口算和估算(第100~103页)
?
1、教学内容分析
第99页的单元主题图(如下图)反映的是能用三位数除以两位数的知识解决问题的情境和有关信息。
单元主题图的4幅图片为学生理解问题提供了形象支撑,中间的数据信息与图片中的情境结合,至少可以构成4个数学问题。这些问题,不但可以让学生感受到用以前的知识不能解决当前的问题,使学生产生学习的认知需要,同时,也为后面的学习提供课程资源。其中,主题图中左上方的情境图和第1条信息是第100页例1的课程资源,右上方的情境图和第2条信息是第101页例2的课程资源,左下方的情境图是第104页例1的课程资源,右下方的情境图是第116页例1的课程资源。
第100页例1教学整百数、几百几十的数除以一位数的口算,该组内容既是前面学习的三位数除以一位数的口算和表内除法的发展,也为三位数除以两位数的估算和笔算打下基础,该例题以主题图中的题材为课程资源(如下图),从情境中引出了两个数学问题。
第1个问题是整百数除以整十数的口算,教科书上呈现了两种口算方法,一是想乘法算除法,即因为40×5=200,所以200÷40=5;二是把200与40去掉一个0来算(都缩小10倍),从而计算200÷40的商。这里学生虽然还没有学习商不变的规律,但学生利用已有的知识经验能够理解和掌握这些口算方法。第2个问题是几百几十的数除以整十数的口算,该问题教科书也呈现了两种口算方法,一是想乘法口算除法;二是根据除数变化引起商的变化规律来口算几百几十的除以整十数,即先将40缩小10倍是4,计算出840÷4=210,再根据840÷4=210算出840÷40=21(因为除数缩小10倍,商就扩大了10倍,所以在210的基础上再缩小10倍得21)。
第100页的课堂活动主要是对整百数、几百几十数除以整十数的口算的巩固练习,但题中将6道题目分成3组,每组的上下两道有一定的联系。换句话说,学生通过上下两道题的联系,不但加强了口算练习,更促进了学生对口算方法的认识和掌握。作为课堂活动,比较注重活动性,让学生在口算的基础上交流口算方法。
例2教学三位数除以两位数的估算 ,该内容以整百数、几百几十数除以整十数的口算为认知基础,也是三位数除以一位数估算的进一步发展。该例题以主题图中的题材为课程资源,具有较强的现实性,涉及行程问题中的数量关系,通过本例题的教学,应使学生在学习三位数除以两位数的估算的同时,掌握行程问题中数量关系的另一种形式:路程÷速度=时间(或路程÷时间=速度)。例题采用文字与图片结合创设情境(如下图)。
从情境中引出了两个数学问题,第1个问题通过解决该校师生乘普通客船去三峡大坝需要多少时间的问题,学习三位数除以两位数的估算。该问题的估算方法灵活,一是可以把624看成600,把23看成20估算,结果大约是30时;二是把624看成620,把23看成20估算,结果大约是31时。第2个问题通过解决该校师生乘坐快船回重庆需要多少时间的问题,继续学习三位数除以两位数的估算。该问题教科书没有呈现具体的估算方法, 其目的是让学生根据第1个问题的估算的估算方法,继续探索624÷52的估算。从624÷52这个算式中数据的特点看,其估算方法一般只有1种,就是把624看成600,把52看成50。估算结果大约是12时。
在例2教学后,学生对解决已知路程和速度求时间的问题有了较充分的体验,由此教科书注意让学生通过议一议的方式发现行程问题中另一种数量关系,即,路程÷速度=时间。当然,这里也不排除学生根据“路程÷速度=时间”说出“路程÷时间=速度”这一数量关系。通过本环节的教学,学生对简单的行程问题中基本的数量关系有了全面的掌握。
第102页课堂活动安排了一个题目,以行程问题为内容,通过图片和文字结合创设情境呈现信息,包括了求时间与求速度的问题。从计算方式看,既有估算,也有口算和笔算。该活动用公路上的路标为背景呈现信息(如图),不但具有较强的现实性,也有一定的综合性。通过本问题的解决,不但可以让学生巩固行程问题中的数量关系和除法的计算方法,也有利于学生解决问题能力的培养。该题目包括3个问题,第1个问题计算小轿车到达哈密市的时间,直接可以用180÷90,通过口算得2时。第2个问题计算客车行驶的速度,直接用581÷7,可以通过笔算得到客车的速度是每时83km。第3个问题计算货车到达乌鲁木齐市大约要多少时间,直接用762÷75,通过估算得出结果大约是10时。
练习十九安排了8道题,其中第1~4题与例1对应,主要是进行口算练习和利用口算解决问题。第1,2题是通过纯粹的口算练习让学生巩固口算方法,提高三位数除以整十数的口算能力;第3,4题用三位数除以整十数口算的方法解决简单的实际问题,让学生在巩固口算方法的同时,感受到整百数除以整十数口算的价值。第5~8题与例2对应,主要是进行估算练习和用除法估算解决简单的实际问题。第5题是纯粹的估算练习,让学生巩固估算方法,提高估算能力;第6题也是用估算的方法找到括号里应填的数,但本题既可以用除法估算,也可以用乘法估算,比如40×( )<170,可以想170除以40大约得4,也可以想40与4相乘接近170。第7,8题是用估算的方法解决简单的实际问题,第7题用母子看电视对话为情境呈现问题,有较强的生活性和一定的趣味性,该题目比较简单,可以直接用估算的方法解决;第8题用文字与图片结合呈现信息,包括求时间和速度的估算,有一定的综合性。
?
2教学建议
对于第99页单元主题图,主要是要利用他引出本单元的课题。在教学时,可以用多种方式呈现信息。一是可以让学生直接观察主题图,说一说主题图中告诉了我们一些什么事、从中获得哪些信息、能提出哪些数学问题,然后教师指出,这些问题要用到三位数除以两位数的知识解决,因此,我们今天开始学习三位数除以两位数的除法。二是有条件的学校,可以用课件展示主题图,在展示时,可以将主题图分成4幅画分别呈现4个情境,并结合情境呈现相关的信息,让学生观察情境后再提出问题,从而引出课题。但在主题图的教学中要注意的问题是,学生提出的问题在这里不必要求学生解答,只是起到引出课题、激发认知需要的作用。
教学第100页的例1时,一是可以先对情境做适当的改造,进行一些三位数除以一位数口算的复习,以便为新课的学习做适当的认知铺垫。二是可以通过教科书上的情境图呈现信息,让学生观察情境图获得信息,并提出问题。学生提问题时,应注意引导学生根据情境中的信息提出问题,并重点引出教科书上的两个问题。三是引导学生列出算式,独立探索计算方法,并组织学生开展算法的交流。对于本例题中的这两个问题,可以引导学生一个一个地解决,也可以让学生把两个问题解决后再开展交流。不论采用哪种教学方式,在交流时,既要交流出教科书上提出的两种口算方法,也应允许学生交流其他的一些方法,但重点应放在教科书上提出的常用的口算方法上。此外,在交流口算方法时,这里可以只让学生交流是怎么口算的,至于为什么这样口算,不必要求学生说得太细。例如200÷40,对于第2种口算方法,如果追问学生为什么20里有5个4,200里就有5个40,可能学生会感到十分困难,因为学生还没有正式学习商不变的性质,这里只是凭借他们的经验进行口算方法探索。
教学第100页的课堂活动时,让学生独立计算,但在计算前,最好提示学生竖着一组一组计算,以便让学生在计算中感受它们的内在联系,寻找简便的算法。在计算后,要让学生对计算方法进行交流。
教学第101页例2时,首先,可以适当介绍一点三峡的信息,随着介绍呈现教科书例2的图片和表格。其次,对于问题的呈现,可以有两种方式,一是随着情境的创设和信息的呈现,教师引导学生把例题中的两个问题都提出来,再让学生列出算式并探索估算方法。二是呈现情境后分别提出问题,分别解决。例如,在呈现了重庆至宜昌的航程后,教师提出:某校师生去三峡大坝参观,去时乘坐普通客船,平均每时行23km。随之让学生提出去三峡大坝大约要多少时间等问题,并引导学生估算。当学生解决了这一问题后,教师又可以出示:他们参观完三峡大坝后乘坐快船回重庆,平均每时行52km。随之让学生提出回重庆大约要多少时间等问题,并引导学生估算。第三,本例题教学的重点应放在学生对三位数除以两位数估算方法的探索和交流上。对于估算方法的探索,要坚持学生自主探索与教师引导相结合。对第1个问题求去三峡大坝大约要多少时间,可以在教师的引导下列出算式,再让学生自主探索624÷23的估算方法,最后开展交流。学生在交流时教师要重点指出(或强化学生的估算方法)624÷23的估算, 624既可以看成600,也可以看成620,因此,估算出去三峡大坝的时间大约需要30时或31时。对于第2个问题,教师完全可以放手让学生独立列式估算,最后开展交流。
在教学例题下面的议一议时,教师可以事先做适当的引导。比如,教师可以提问:请观察上面两个算式(指例2中的两个算式),他们的被除数、除数和商各代表什么?再让学生观察上面的算式看能发现什么。并在独立思考的基础上交流,最后概括出路程、速度和时间的另一种数量关系式:路程÷速度=时间,并要求学生在理解的基础上记忆。
教学第102页的课堂活动时,可以先让学生观察情境图,阅读有关信息,教师要适当帮助学生理解情境,特别是对情境图中标志牌含义的理解,明确3辆车现在的出发地点就是标志牌处。然后让学生独立完成,最后组织学生开展交流。在交流时注意以下几点:一是要注意让学生体验算法的选择,换句话说,应让学生明确要针对计算对象的特点和自己的计算能力选择口算、估算或笔算(含用计算器计算)。二是要结合解决问题,通过交流强化行程问题的数量关系。
关于练习十九的教学。
教学第1,2题时,可以先让学生独立口算,再交流口算结果,并适当选择几道有代表性的题目让学生说一说口算的方法。比如200÷40,520÷2等。第3题学生独立解决后在交流时,一是要提问为什么用180÷60;二是让学生说一说180÷60的口算方法。教学第4题时,让学生解答后说一说数量关系,同时注意写上答语。教学第6题时,让学生在独立思考的基础上填出括号里的数,然后重点组织学生交流他们的思考方法。在学生交流时,不但要说一说思考的方法,而且教师还要提出一些问题促进学生的思考。如40×( )<170,学生说到因为40×4等于160,所以括号里填4时,教师可以提问:如果填5怎样?填3呢?教学第5题时,要让学生思考7月份是多少天。教学第8题时,在学生独立解决问题后,要组织交流解决问题的方法,特别应结合行程问题的数量关系说一说。