‘壹’ 请问在日常生活中经常会遇到的二进制的现象都有哪些
二进制就是“是”与“非”,1就是“是”,0就是“非”。
硬币的正-反,电梯的上-下,东西的大-小,位置的高-低,东西的长-短等等。只要只有2个结果的都可以是二进制现象,即不是这个结果,就是那个结果,不存在第三个结果。
‘贰’ 二进制在生活中的运用有哪些
有无其他的"进制"各有什么优点?? 电子电路采用二进制是最方便的,因此二进制得到了普遍地运用。由于采用二进制会使数字位数变得很长,而十六进制和八进制与二进制之涧的互换十分方便,因此程序员经常使用十六进制和八进制。
由十进制转换成其他进制只需用短除法就行了,而由其他进制转换成十进制则可以把各个数位上的数字乘以权重再相加即可。
为了区别各种进制,在书写的时候通常会在数字后面加一个字母:如B表示二进制,O表示八进制,D或不带字母代表十进制,H代表十六进制。
便于计算机处理 二进制——计算机在进行数的计算和处理加工时,内部使用的就是二进制计数制,简称二进制。它有两个不同的数码:0和1,在进行计算的时候是逢二进一。例如:10就是等于十进制中的2,11就等于3,110就等于6等等。
除了二进制外,最常见的就是十进制-----就是我们日常生活中最常用的,小学的数学课本中学的,国际惯例是在没有说明的情况下,都默认的是十进制。还有八进制它有八个不同的数码:0,1,2,3,4,5,6,7 口诀是逢八进一,因此看不到8了。十六进制——它有十六个不同的数码:0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,(其中字母A B C D E D,分别代表10,11,12,13,14,15),其计算法则是逢十六进一。例如:1F就等于十进制中的31,2D就等于45等。
‘叁’ 生活中的二进制的例子
生活中的二进制的例子
6只袜子(不分左右),就是3双。
‘肆’ 在日常生活中,常用的数制有哪些呢
在日常生活中,常用的数制有:二进制,三进制,四进制。
二进制作为计算技术中广泛采用的一种数制,两个数字便可表示所有数字,二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。
当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
进制
在基数b的位置记数系统(其中b是一个正自然数,叫做基数),b个基本符号(或者叫数字)对应于包括0的最小b个自然数。 要产生其他的数,符号在数中的位置要被用到。最后一位的符号用它本身的值,向左一位其值乘以b。
整数部分采用 "除2取余,逆序排列"法。具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为小于1时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
‘伍’ 二进制,十进制,十六进制有什么用,在生活中怎么运用
二进制:
技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。易于进行转换,二进制与十进制数易于互相转换。
(5)
用二进制表示数据具有抗干扰能力强,可靠性高等优点。因为每位数据只有高低两个状态,当受到一定程度的干扰时,仍能可靠地分辨出它是高还是低。
十进制:便于统计
十六进制:计算机中二进制太长,用16进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。
16,是2的4次方。这一点使得三种进制之间可以非常直接地互相转换。16进制缩短了二进制数,但保持了二进制数的表达特点。
二进制是在计算机或是电路中应用,十进制就是我们平常用的,满十进一,16进制我只知道在考试涂卡时候有用到(1,2,4,8码)
‘陆’ 二进制在生活中的运用有哪些
点灯开关,电梯上下,硬币的正反面,太多了,数不胜数。
‘柒’ 二进制在生活中的例子 给别人讲二进制时,这个比较难懂,所以我想多找些生活中的实例,
很多啊,最简单的就是开、关了,凡是有两个相反、相对状态的就可以抽象为0和1了.
讲二进制应该类比十进制来讲.如10进制中,过了9就要进位了,2进制中,过了1就要进位了,高位就加1.和也是,如10进制的235,实际上是这样算出来的:
235 = 2* 10^2 + 3* 10^1 + 5*10^0 = 235
2进制也是如此:
101 = 1* 2^2 + 0*2^1 + 1*2^0 = 5
都是以这个进制的基数,进行每位的求和后得出.只要脑子还灵光的,都应该可以理解.
‘捌’ 在生活中有哪些进制数
生活中常用的有10进制,和2进制,2进制常用在开关之类的,10进制就是生活中使用的一切数字。
‘玖’ 二进制在生活中有哪些应用
生活中的计算机就是利用二进制工作的,电器的开关也是二进制,利用摩斯密码(灯的常亮和短亮)通信,两只鞋子等于一双鞋子等。
‘拾’ 生活中除了十进制还有哪些常见的进制
1、二进制
二进制作为计算技术中广泛采用的一种数制,两个数字便可表示所有数字,二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。
当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
2、三进制
三进制以3为底数的进位制,三进制数有0、1、2三个数码,逢三进一。在计算机发展的早期,采用了一种偏置了的三进制(对称三进制),有-1<一般用T表示>、0、1三个数码,这种三进制逢+/-2进一。
3、四进制
四进制以4为基数的进位制,以 0、1、2 和 3 四个数字表示任何实数。四进制与所有固定基数的计数系统有着很多共同的属性,比如以标准的形式表示任何实数的能力,以及表示有理数与无理数的特性。
4、四进制
四进制以4为底数的进位制,以 0、1、2 和 3 四个数字表示任何实数。四进制与所有固定底数的记数系统有着很多共同的属性,比如以标准的形式表示任何实数的能力,以及表示有理数与无理数的特性。
5、八进制
Octal,缩写OCT或O,一种以8为基数的计数法,采用0,1,2,3,4,5,6,7八个数字,逢八进1。一些编程语言中常常以数字0开始表明该数字是八进制。八进制的数和二进制数可以按位对应(八进制一位对应二进制三位),因此常应用在计算机语言中。